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This essay gives a self-contained introduction to quantum game theory, and is primarily
oriented to economists with little or no acquaintance with quantum mechanics. It assumes
little more than a basic knowledge of vector algebra. Quantum mechanical notation and re-
sults are introduced as needed. Itis also shown that some fundamental problems of quantum

mechanics can be formulated as games.
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Quantum game theory is an important development in quantum computation, and has impli-
cations both for classical economic game theory and for quantum mechanics. Unfortunately, the
guantum mechanical and quantum computational knowledge assumed in the literature presents a
serious communication barrier for most economists. In the other direction, quantum game the-
ory does not always seem to be cognizant of many traditional results in classical economic game
theory. This essay is an attempt to bridge the gap somewhat, by providing economists with a self-
contained introduction to quantum games. The essay assumes, for the most part, little more than
a knowledge of vector algebra as mathematical background, and introduces apparatus and results
from quantum mechanics and quantum computation as needed. Key concepts such as Grover’s
search algorithm, Shor’s factoring algorithm, and the quantum teleportation and pseudo-telepathy
protocols based on entanglement are presented in detail, along with 12 quantum games that illus-
trate the differences between quantum and classical game theory. Along the way we will see that

many of the classical issues in quantum mechanics can be given a game theoretic formulation.

Some background history

Game theory traditionally began in 1944 withe Theory of Games and Economic Beha\bgr
John von NeumanandOscar MorgensternBut it had antecedents stemming from the Hungarian
mathematician von Neumann'’s earlier simultaneous interest in game theory and the foundations of
guantum mechanics. Since we are interested in quantum games, we will describe the development

briefly as follows. In 190Max Planck attempting to get rid of the infinite energy implied in



the then current formula for black body radiation, proposed a solution in which electromagnetic
radiation energy was only emitted or absorbed in discrete energy urgisaoitg multiples of a
fundamental unib: hv,2hv,3hv---, wherev is the frequency of the radiating oscillator, amas

now known as Planck’s constant. In 19@bert Einsteirused Planck’s quantum as an explanation

for the photoelectric effect, whereby metals required incident light of a minimum frequency before
they would release electrons. Incident light of frequen@ppeared to behave as a collection of
particles (‘photons’), each with enerdgy= hv. Niels Bohrthen developed a useful, if unsatis-
factory, model of the atom as a nucleus surrounded by planetary electrons whose orbits assumed
only discrete values for the angular momentum, corresponding to multiples of Planck’s quantum
of energy:,L, 20 30 ... In 1924Louis de Broglienelped clarify the picture by associating with
matter a wave, and noting that waves in closed loops, such as the electron ‘circling’ the nucleus,
were required to fit evenly around the loop—i.e. to had®le numbercycles. The whole num-

bers 12,3, --- were thus associated with Planck’s quanta (times a conafatah, 2ah, 3ah, - - -.

This was theold quantum theory.

The newquantum theory began in 1925 whverner Heisenbergonceived of representing
physcial quantities by sets of time-dependeminplexnumbers. Heisenbergfaatrix mechanics
essentially involvedN x N input-output matrice$d, representing transitions between states of
matter. If we denote byy the state of the system we are interested in at tinjwe will for
the moment set to zero), wherey is aN x 1 vector, then Heisenberg was working with the

eigenvector-eigenvalue system
Hy =Ey 1)
whereE, a scalar, represents some quantized energy level. Assuming the sy$esqudtions is
nondegenerate, there afesolutions fork, sayE,, n=1,2,...,N. TheE, eigenvalues, or energy
levels, are associated with &heigenvector-basis for the state spacayof
The following yearErwin Schidinger, looking for an electromagnetic interpretation of the
same phenomena, published his famous wave equation

Ly R 97 2
NS0 = Zm (8x2+8y2+ﬁ> VEVY, )

wherei = /-1, h'is Planck’s quantum of enerdy divided by 2r, andV is potential energy.
To Schidinger’s delight, he discovered that his approach and Heisenberg’s matrix mechanics

were mathematically equivalent, one form of this equivalence being suggested by the equation



iR%Y = Hy. If we, for example, sey = Aexp~ 7 in Schibdinger’s equation (2), and lét =
_2_22 (g—xzz + aa_;z + g-;) +V, then we obtaifEy = Hy, which is Heisenberg’'s equation (1).

A few years latedJohn von Neumanrwhose interest in quantum mechanics was inspired by
Heisenberg, ‘showed that quantum mechanics can be formalized as a calculus of Hermitian oper-
ators in Hilbert space and that the theories of Heisenberg and@uober are merely particular

representations of this calculus.” [35, p.22] Recall thateamitian matrixis one that is its own

complex-conjugate transpose. For example, consider the nagtex . The transpose
i O
: . 0 i : : : :
of this matrix |s<ryT = . Then if we take the complex conjugate, by changing the signs
—i 0
of the imaginary parts, — —i,—i — i, we again obtain the matri®,. So oy is Hermitian. A

Hermitian matrix may be considered aperatoron a vector in Hilbert space. Recall that Hilbert
space is simply a vector space defined over the complex nur@heiish a definechormor length

or inner product For the vectony the norm is||y|| = v/wTy, wherey' is the complex conju-
gate transpose ay. Hilbert spaces may be infinite dimensional, but we will only consider finite
dimensional spaces in this essay.

It was during this heady period that game theory arose. The name ‘game’ was introduced in
1921 by the French mathematician Emil Borel, who was preoccupied with bluffing in poker and
initiated ‘la theorie du jeu’. In his 1928 paper [49], written for Karl Menger’s Vienna Colloquium,
von Neumann defined, and completely solved, two-person zero-sum games. He speculated on
N-person games, which were more complicated due to the possibility of coalitions: with three
people or more, some people could benefit from cooperation. Later, in a famous paper delivered
to the Princeton economics club in 1932, the same year his book on the foundations of quantum
mechanics was published, von Neuman laid out the whole apparatus of linear programming and
the foundations of his later game theory book with Morgenstern. (This paper was not published
util 1937 [51].)

Central to many results was the linear programming problem and its dual [24]. The linear
programming problem is this: given amx n matrix A, ann x 1-vectorb, and anm x 1-vectorc,

find a non-negativen x 1-vectorx such that

x' cis a maximum (3)



subject to
xX'A<b'. (4)

The dual problem is that of finding a non-negative 1-vectory such that
y'bis a minimum (5)

subject to
Ay>c. (6)

The only major game theoretic result missing from von Neumann-Morgenstern (and indeed one
missing from the quantum game theory literature) is the theory of the core [40, chapter 8préhe
arises inN-person game theory. IN-person game theory players’ interests are not necessarily
opposed, Some players may improve their (expected) payoffs by forming coalitions with other
players. A maximum value can be determined for each subset of players, which gives rise to
the characteristic functionof the game. LefS be a member of the set of subsetshf The
characteristic function(S) is a mapping from the set of subsets (i.e. coalitions) of players to an

(expected) payoff value in the set of real numkers
v(§:S—R (7)

The valuev(S) is determined as the maximum value obtainableSiy the two-person game
between the coalitios and the coalition of all remaining playels— S. An imputationis a set
of numbers (allocations or payoff§); } assigned to each playem N. The coreCy is the set of

imputationsCy = {{m; }x} such that
V(S < Esm for every subseSin N, and Zwm =V(N). (8)
i€ i€

The core (it may be empty) is critical to economic equilibrium. The core restricts the value of any

coalition to be not greater than the sum of the imputed payoffs to each member of the coalition

individually. Debreu and Scarf [12] showed that in a replicated market game the core shrinks down

to a set of imputations which can be interpreted in terms of a price system emerging as its limit.
Meanwhile, in quantum mechanics, the reactionary forces of determinism were at work. In a

1935 paper [18Einstein-Podolsky-Ros€EPR) attempted to prove thecompletenesef quan-

tum mechanics by considering entangled pairs of particles which go off in different directions.

The particles may become separated by light-years. Nevertheless a measurement of one particle



will instantly affect the state of the other particle, an example of quantum mechanics’ ‘spooky
action at a distance’. (We will discuss entanglement later, in the body of this essay, but essentially
two particles are entangled if their wave functions cannot be written as tensor products.) This
instantaneous effect is sometimes called the ‘EPR channel’, though properly speaking it should be
called theBohr channebecause Bohr argued for its existence, while EPR argued agaidshit.
Bell [1] formulated a set of inequalities that would distinguish experimentally whether quantum
mechanics was incomplete, or whether physicwis-local permitting instantaneous propagation
of some effects of some causes. Fortunately Bohr was right and EPR were wrong, as experimental
evidence has decisively demonstrated.[25] The Bohr channel is now the basis of quantum tele-
portation, and, indeed, every quantum computer is in some sense a demonstration of the Bohr
effect.

As it stands today, quantum game theory can probably be viewed as a subbranch of quantum
computation. With respect to the latter development, it was appaRithard Feynmaif22] who
first foresaw the unusual power of quantum computers, noting that simulation of quantum evolu-
tion in a classical computer would invole an exponential slowdown in time. Once again there is a
direct line from von Neumann [52] (with Stan Ulam [68]): ‘In the nineteen fifties, Ulam and von
Neumann began to discuss computational models known as cellular automata, in which simple
rules of computation applied to systems with many degrees of freedom could produce complex
patterns of behavior. By the nineteen eighties, Friedkin, Feynman, Minsky and others were spec-
ulating on the possibility of describing the laws of physics and the universe in terms of cellular
automata and computation. Underlying their ideas was a dissatisfaction with the conventional
description of physics based on continuous space and time.’ [34]

David Deutsch13] suggested that quantwsuperpositionmight allow the parallel performance
of many classical computations. Indeed, we shall see that superposition is the key new ingredient
that makes quantum games different from classical games, whether or not the superposed states
areentangled For dynamic games, superposition suffices, though static games generally require
entanglement also. (Superposition is the ability of a quantum observable to be in a linear combi-
nation of two or more states at the same time.)

The ‘killer app’ that created a storm of interest in quantum computation came RdtenShor
[62] showed that a quantum mechanical algorithm could factor numbers in polynomial time. This
was an exponential speed-up over factoring algorithms available to classical computers. Shor’s

algorithm relies mainly on superposition and an ingenious application of the quantum Fourier



transform. Another result was obtained byv Grover[28], who showed a quantum mechanical
way to speed up the search for items inwitem database from®(N) steps toO(v/N) steps.
Grover’s result is based upon the rotation of quantum states (vectors) in Hilbert space.

Quantum game theory seems to have crystallized vireand Meyergave a talk on the subject
at Microsoft Corporation (see [46] for an account). Of the twelve quantum games considered in
this essay, three are due to Meyer (the Spin Flip game, and Guess a Number games | and II).

As von Neumann and Morgenstern noted [53], ‘In order to elucidate the conceptions which we
are applying to economics, we have given and may give again some illustrations from physics.
There are many social scientists who object to the drawing of such parallels on various grounds,
among which is generally found the assertion that economic theory cannot be modeled after
physics since it is a science of social, of human phenomena, has to take psychology into account,
etc. Such statements are at least premature.” One may conversely note that some may similarly
object to mixing economic concepts with those of quantum mechanics, but such objections are at
least premature. Indeed, the human brain is arguably a quantum computer [65] [66] [55] [14] [15],
though the mind may be more than that, so to ignore quantum mechanics in questions of psychol-
ogy, much less economics, is folly indeed. In the reverse direction, the role of the human mind in
the quantum measurement problem has been a subject of contention [36] since it was first clearly
delineated by von Neumann. In any event, quantum games may have lessons both for economics

and quantum mechanics.

Preliminary mathematical pieces

Before defining a game, we are going to give an example of one. This example, the Spin Flip
Game in the next section, will highlight some of the differences between traditional game theory
and quantum game theory. In order to explain how the Spin Flip Game works, we will need some
modest mathematical preliminaries, involving 4 vectors and Z 2 matrices.

The following simple vectors will prove quite useful for our purposes:

1 0
u= , d= . 9)
0 1

These are, of coursbéasisvectors for 2-dimensional (complex) space, as any point can be ex-
pressed in the form adu+ bd (where, in general, it is assumed tlaeindb are complex scalars,

a,b € C). Butu andd can also represent many 'spaces’ or states outside geometry: Yes or No



responses, Up or Down spin states of an electron (with spin measuredzmlitteetion), Heads

or Tails in a probability sequence, Success or Failure of a bidding process or an electronic device,
and so on. A choice afi or d can also represent player moves in a game, and we can represent
a sequence of such moves by thits in a binary number, or the quantum equivalgobits Bits

and qubits differ by the fact that a ltitis a single numbeb € {0, 1}, while a qubitg is a vector in

a two-dimensional Hilbert spacg,c {au+ bd}. (Later we will introduce the Dirac notatid@),

1
|1), and in this essay there is the correspondenee|u) < — |0) < bit 0, and the similar
0

correspondence < |d) < — |1) < bit 1. For example, to foreshadow what is to come,
1

the 5-qubit register or sequen{#011 could represent the tensor product of vectors as well as
the number 19= 2% 4 21 4 20):

|10011 = 0 ® ! ® ® ® (10)
1 0 0 1 1
= (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0)T. In the latter vector,
the 1 is in the 20th slot, not the 19th, because we start counting from 0, which occupies the first
slot. The same sequence could have also been wdtiedd)
Next we need some way to transform one state into another. For a two-state system, it is useful

to do this with the Pauli spin matrices. The three 2 Pauli spin matricesire

01 0 —i 10
Oy = 5 Gy - 5 Oz = . (11)
10 i O 0 -1
These three matrices, along with the following unit matrix

10
1= , (12)
01

span 2x 2 Hermitian matrix space (recall that a Hermitian matrix has diagonal elements that are
real, and mirror-image off-diagonal elements that are complex conjugates of each other). Each of

the spin matrices has a simple effect on the base stardd. In particular,
lu=u, 1d=d (13)

Gxu - d, Gxd =Uu (14)



Table 1 summarizes some matrix properties of the Pauli spin matrices:

TABLE [:

qu - U, sz - —d

c2=1
2 _
oy =1
c?=1

chy - —Gycx - iGz

Gyo-z == _Gzcy - IO—X

626)( - _chz — |Gy

Products of Pauli spin matrices

The spin flip game

(15)

Electrons have two spin states: spin up and spin down. Let us consider a simple game of

electron spin flip played between Alice and Bob. Alice first prepares the electron in spin up state

u. After this initial step, Bob applies either tlog or thel matrix tou, resulting in either

ou=dorlu=u.

(16)

Then Alice (not knowing Bob’s action or the state of the electron) takes a turn, also applying either

oy or 1 to the electron spin. Then Bob (not knowing Alice’s action or the state of the electron)

takes another turn. Finally, the electron spin state is measured. If it is indtate, Bob wins $1,

and Alice loses $1. If it is in thd state, Alice wins $1, while Bob loses the same amount.

The sequence of possible choices by Botlmng and Alice fows) are summarized in Table

Il. Note that Alice’s move is the middle one in each sequence of three, reading from right to left.

Alice\Bob

1,1 Loy oxl

Ox;O0x

1

Ox

1,11 11,04 oxl1

11GX11 11GX10-X GX!GX11

6X111GX

Ox,0x,0x

TABLE II: Sequence of player moves

For examplel, 1, ox means that Bob played, followed by Alice’s play ofl, followed by Bob’s

play of 1. The net result id1oxu = d. Thus Alice wins $1. The sequence of spin states after each



move, starting from the initial state are shown in Table Ill. Again, each sequence of three should

be read from right to left.

Alice\Bob| 1,1| 1,04| ox,1|0x,0x

1| u,uuld,d,d|d,u,ulu,d,d

oyx|d,d,u|u,u,diu,d,u|d,u,d

TABLE Ill: Sequence of spin states

Finally, Table IV shows the payoff tAlice, positive if the final spin is in thd state, negative

if it is in the u state.

Alice\Bob|1,1|1,0x|ox,1| 0x,0x

-1 +1] +1] -1

ox|+1| -1 -1 +1

TABLE IV: Payoffs to Alice

This is the basic Spin Flip Game, which we are going to extend in two directions: first, by
considering probabilistic moves, and, second, by considegirantum superpositiofwithout
guantum entanglemenof states. But before doing this, let’'s consider some basic game theory

terminology.

First game definitions and strategies

As is implicit in the previous section,gamel” may be defined as a set= I'(players,moves
or actions,outcomes,payoffs). In the Spin Flip Game pllagerswere Alice and Bob, thenoves
were the application of the matrices or 1, the outcomeswvere the spin states or d, and the
payoffsto Alice were either +1 or -1, according to whether the final statedvasu, respectively.
Since this was &vo-person, zero-suigame, the payoffs to Bob were the exact opposite of those
to Alice.

Omitted thus far in the account of the game is any explanation how Alice and Bob determined
their moves—how they decided whether to payor 1. A strategyis a rule for determining a
move at any stage of a game. That is, in our exampheoeeis a member of the sétl, oy}, while

a strategyis afunction f mapping the state of the game to the set of moves:game state—
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{1,0x}. (There seems to be confusion on this point in the quantum game theory literature.) This

is not quite a good definition, since the ‘state of the game’ may not be known to a player; a player
may know little more than his or her move. So let’s revise this tstrategyfor Alice is a mapping

fa: { Alice’s information} — { Alice’s moves}. Similarly for Bob. In the Spin Flip Game Alice,

after initial preparation of the electron, has only one opportunity to choose a move, so she has a
single strategy at the second, or middle, step of the sequence of three moves. Bob has strategies
for the first and last steps. Thus, associated with a sequence of moves is a sequence of strategies.
In economics, strategies are highly dependent on a playgdsmation Of particular interest

is asymmetridnformation, where one player has some information advantage over another, or
where the information sets of the players are not the same. If Bob can make quantum moves that
Alice cannot, then clearly Bob has an information advantage in at least that respect. Strategies are
endogenous to a game, given the game’s allowed moves and payoffs, so strategies are not properly
part of the game’s definition. Rather, solving a game essentially means determining the optimal
strategies for the players.

The concept of information set is important. In the Spin Flip Game we said that neither Bob
nor Alice could know the other person’s moves. Suppose we relaxed this assumption. Then Alice
would know Bob’s first move, and could choose her move accordingly, but it would make no
difference. Bob, seeing Alice’s move (and knowing his own first move), could always choose a
final move that would leave the electron in a spin up statéle would win 100 percent of the
time. It would not be a ‘game’, but rather a racket. So in this case we must limit the information
sets of Alice and Bob in order to make it a game in the first place.

Now, as an example let us consider the following stratedigsnd fg, for Alice and Bob,
respectively. These will be calladixedstrategies because they involve selection of a move with

some probability mechanism.

fa = play 1 with probability p = %, play ox with probabilityq = a7

[N =

fs = play 1 with probability p = %, play ox with probabilityq = (18)

>
Then, looking at the columns of Table IV, we see that Ali@Xpected payoffta, no matter what

Bob does, is always

ﬁA:%(Jrl)Jr%(—l):o (19)
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while, looking at the rows of Table 1V, Bob’s expected payoff is always

To = ;(H) +3(~1)+ (-1 + 2(+1) =0 (20)

Of course, for the concept afixedstrategies andxpectegayoffs to make much sense, we should

consider a sequence Nfgames
NIN-1PN-2---Talals. (21)

The actual payoff to Alice, lettingx stand for the number of wins iIN games, will be a member
of the payoff set
MN={f(x;N)} ={2x—N, forx=0,1,--- ,N} (22)

while the probability of these payoffs are

X

P(M) = {f(x;N,p)} ={ ( N ) p*gN %, forx=0,1,---,N}. (23)

For example, witiN = 3, the possible payoffs to Alice afe-3,—1,1,3}, and ifp = % these have
respective probabilitie§s, 3,3 1}, Alice’s expected payoffra is 0, but ifN is odd, her actual
payoff will never be 0.

Physicists will recognize equation (22) as giving the possible outcome states when a massive
particle of spin’\'7ﬁ is measured. The spin in this case definegMn- 1)-state quantum system,
with possible outcomes for the spin values (in terms of the fundamentag).lgi\‘/en by equation
(22). Thus theneasureapin states of the massive particle may be thought of as being determined
by N Spin Flip games between Alice and Bob.

In the matrix of payoffs analogous to Table IV, for a general two-person, zero-sum game, let
Alice’s moves be represented by the mixed strategy (the set of probabilities over nives)
{a1,a,- -+ ,am}, while the mixed strategy of Bob is representedgy= {b1,by,--- ,bn}. Let the

payoffs to Alice be represented by thex n matrix [7;j]. Then theexpected payoffo Alice is
n m
A= ijaibj. (24)
Vp3

In this context, we should mention thminimax theorenwhich says that for every finite two-
person, zero-sum game

max,, (Min 5, Ta) = Min g (Maxe, Ta). (25)

;!
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That is, Alice chooses probable moves to maximize her expected payoff, while Bob choses prob-
able moves to minimize Alice’s expected payoff. The minimax theorem says the payoff to Alice’s
maximizing set of probabilities given Bob’s minimizing set of probabilites is equal to the payoff

to Bob’s minimizing set of probabilities given Alice’s maximizing set of probabilities.

Amplitudes and superpositions and his cheatin’ heart

Let's consider a quantum state (a vectgr)of the following form, wherea and b may be
complex scalars:
v = au+ bd (26)

In quantum computation, this superimposed two-dimensional state is knowauéé,avhich we
will discuss in detail later. Hera andb areamplitudes and a (von Neumann) measurement of
v will obtain the base statewith probability |a?, while the measurement will yield base stete

with probability |b|?, where|a]? + |b|? = 1. (Recall that for a complex numbayand its complex

conjugatea*, we haveaa’ = a*a= |a/?.)

This raises the possibility of games, including variants of the Spin Flip Game, for which there
1
7
%. Thus probability is built into measurements of the state vector, irrespective of whether

is no classical analog. For example, set b = Then the probability of eithen or d is

&2 =
a mixed strategy is chosen by either Bob or Alice.
Hereu andd are orthonormal (that is, the inner productuofvith d is 0, and the inner product

of eitheru or d with itself is 1), so we may obtaia as the inner product
(y,u) = a(u,u) +b(d,u) =a(1)+b(0) =a. (27)

A similar computation will yieldo.

Alice Cheats Now let us consider a variation of the Spin Glip Game—Ilet's calhlice
Cheats—in which Alice has a way of cheating in the initial preparation of the spin state of the
electron. First, suppose she initially prepares the electron in spindstit@wing that Bob thinks
it will be in spin statau. Otherwise the game is exactly as before: both Bob and Alice play dither
or oy. Itis easy to see that the arrangement of spin states changes in Table Ill, and the arrangemnt
of payoffs to Alice changes in Table IV, but the set of paydifss still the same, and the corre-

sponding payoff probabilitieB(N) to Alice are unchanged. Thus Alice has cheated to no avail.
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She simply changed the initial state franto d, and it had no impact on the outcome of the game.
Where she previously got +1, she now gets -1, and vice-versa.
So Alice tries something else. She choses the initial state %b@-‘r d). Then whether Bob

plays1 or ok, his move leaves the state of the game unchanged:

1[%2(u+d)] _ %2(1u+ 1d) — %Z(uw), (28)
Gx[%z(qud)] = %Z(cfxuﬂL oxd) = %Z(d +u). (29)

Sinceu+d = d+u, the state is unchanged by the play of either cx. However, when the final
measurement of the (unchanged) state of the electron is taken, Alice discovers to her frustration
that she once more wins or loses a dollar with equal probability, because a measurement of the
final superposed state yield®r d with equal probability. For a single game, the payoff[3etnd

corresponding probabilitiel3(I1) are:

n={-1,+1} (30)
P(T) = {(5 (5 = (5.5 (31)

Bob Cheats Let’s return to our basic Spin Flip Game, where a repentent Alice prepares the
electron in an initiau state, with the added detail that she follows a mixed strategy, and choses
or oy each with probabilityp = % But now we allow Bob to cheat. Since Bob does not prepare
the initial electron state, Bob’s method of cheating will differ from Alice’s. What dastardly things
can Bob do? Bob has some extra Pauli spin matrices up his sleeve, nap@elyg o,, as well as
linear combinations of these. In addition, Bob has the final move. Let's suppose that Bob plays

the so-called Hadamard operatbr= %(ijt Oz):

TN (32)
V2l -1 )

After Bob’s first move, the spin state would be

PE TN ERE R N NN I N 3
“va\1 1) \o) vl T

As we saw in equations (28-29), Alice’s mixed strategy will not change this state. Then Bob plays

1 ({1 1)1 (1 1(2
o3 ()3() ()

H again to obtain:
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Bob will always win. This results from Bob’s ability to createsaperpositionof states (and
his having the final move). Like Sabalinger’s cat that is simultaneously both alive and dead,
the electron spin is simultaneously batlandd after Bob applies the Hadamard matkixto u.
Alice cannot alter the outcome by playing a classical mixed strategy that choses a pleytiof

probability p and oy with probability 1— p.

Guess a number games

To understand th&uess a Number Gamee will first need to introduce some more concepts,
includingqubits theWalsh-Hadamard transformatidihe n-bit analogue of the Hadamard trans-
formation) and some elements of tBeover search algorithnji28]. The Grover search algorithm
is one of the fundamental techniques of quantum computation, so it is not surprising it shows up
in quantum game theory.

Dirac notation. For convenience, we are going to alter our designations &mdd into forms

that will denote each 2 1 vector and also its & 2 complex conjugat&anspose:

1 0
|U> = ,<U| = (130)7 |d> = 7<d| = (07 1) (35)
0 1
Note that if|x) = |, then(x| = (1,i). This is theDirac bracket notationwhere(x| is the

—i
bra and|x) is theket The bras are horizontal, and the kets are vertical. Notice that we may then

use the formu)(d|:

1 01
u{d| = (0,1) = (36)
0 00

where|u)(d| turns a|d) into an|u); namely,|u)(d|d) = |u); and an|u) into a 2x 1 zero vector,
namely|u) (d|u) =
Qubits. Consider am-bit binary numbex:
X = bn_1bn_2- - baby by, (37)

where eacli; is either 0 or 1p; € {0,1}. Note that the decimal equivalentxfs

X =bn_12"" 1+ by_22" %+ - + bp2° + b1 21 + b2’ (38)
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In a quantum computer, eadi may be represented Hy) or |d), respectively. We make the
correspondencgl) — |0), |d) — |1), and call{|0),|1)} the computational basisThe latter rep-
resentation, however, makes them quantum bitgutnits—vectors in a two-dimensional Hilbert
space. Each qubit can be any linear combinasi@ + c|1), where|a|? 4 |c|? = 1. For example,
consider the 3-qubit state

ly) = |g2) ® |a1) ® |do) Where (39)
1

|02) 272(|0>+|1>) (40)

a) = [1) (41)

[do) = [1). (42)

Then the quantum register is the superpositiof8pand|7):

¥) = 500+ e [Del) 3)
1
= 51018 +[111) (44)
1
= 513417 45)

This calculation will be further clarified below.

A collection ofn qubits is called ajuantum registeof sizen. There areN = 2" such numbers
or quantum register statesn terms of the computational badis b; € {|0),|1)}; hencex € S=
{0,1,2,--- ,N —1}. So our Hilbert space has dimensibin= 2". That is, a classical computer
with n bits has a total of 2possible states. By contrast, a quantum computer wihbits can
be in any superposition of thes@ &tates, which results in an arbitrary state or vector'in 2
dimensional Hilbert space. A superpositian) of all the computational basis states, lettade

the probability amplitude associated with the number or stat®uld be designated

"1
W) = X; ax|X). (46)
If all amplitudesay are equal, then this superposition is designated
1 -1
|Ws) = N X; ). (47)

Note that in the summation in equation (4&), runs through all basis states or numbers, and all

the basis states are orthogonal to each other. Hence for a given number () sta¢éehave that
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the amplitude fotz) is the inner product

1
A measurement dfiys) will thus yield |2) with probability
, 1
(@ = 5. (49)

Now, when we have eany-statesystem ofju)s and|d)s (i.e.,|0)s and|1)s) like this, each in
a Hilbert spacéH, of 2 dimensions, we simply place the states side by side. Two such states side
by side form a Hilbert space ¢14 = Ho ® Ho dimensions. Basis vectors in a 2-qubit quantum

register could thus be represented

1
1 u 0
0)|0) = [u) ® |u) = ( ) u) = ( ) = (50)
0 0 0
0
0
1 d 1
0)|1) =[u) ®|d) = ( ) d) = ( ) = (51)
0 0 0
0
0
0 0 0
1D[0) = [d)®|u) = ( ) u) = ( ) = (52)
1 u 1
0
0
0 0 0
D) =[d)®|d) = ( ) |d) = ( ) = (53)
1 d 0
1

Physicists, who get bored with the excessive notation, usually compress the tensor product of

qubits as

U) @ W) ©--- @ |u) — [u)|u)---[u). (54)
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And then often compress it again:
uyfu) -+ |u) — |uu---u). (55)

All these different ways of writing multiple states mean the same thing. Thus, numbers represented
asn-qubit vectors lie in a space of dimensidh and may be written asxX2" column vectors (each
of the 2" slots in the column vector determined by the state-qtibits), as illustrated fad, © Ho
above. We now introduce a matrWbn, that operates on these vectors.
The Walsh— Hadamard Transformation. TheWalsh-Hadamard transformatioWn, is de-

fined recursively in the following way. Set

W—H= L1 (56)
v2\i1-1)’
1 [ Wona Wono
W = 27t T forn> 1 (57)
2n Wznfl —Wznfl
Note that\j is
11 1 1
W, 1W, 111-1 1 -1
Wy =Wo@Wo = =5 : (58)
W, —1W, 11 -1-1
1-1-11
Thus, for example
11 1 1 1 1
1-11 -1 0 111
Wiluu) = = == (59)
1 1 -1-1 0 211
1-1-11 0 1

We can rearrange the output, and see that it is a superposition of the elem®&ntg 0f1, 2, 3}:

NI -
I\)Il—\

[ +

- -

| =

0
Cl) [|00) 4 |01) + |10) + |11)] (60)
0

O O O

0
1
0
0

o O O Bk

1
1] 1
2|1

1

[|0> +1)+[2)+13)] = Z) ) (61)
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where heren = 2, and we have mapped the binary numbers to their decimal equivalents. Thus,
if [y) =Wj|uu) and we take a measurement|gf), we will find a given numbey, y € S, with
probability [%]2 = %1. We may take the vectorx) as basis vectors for our Hilbert spakl.
Applying Wen to n-bits, all in state|0), results in an equally weighted superposition of all states
(numbers) irS={0,1,---,2"—1}:
1 -1
Win|00- --000) = Nei X; X). (62)

What happens if the qubits in the initial state of the quantum register are n@} &fiot all
|u))? Define thebit-wise inner product, or dot product, ¥, for X = X,—1Xn—2- - XoX1X0, Y =
Yn-1Yn—2"--Y2Y1Y0, @SX-Y = Xn_1Y¥n-1+Xn-2Yn—2+ - - +X2Y2 +X1y1 +Xoyo mod 2. (In the present
example, taking the result mod 2 is redundant.) Then if the register was initially in|gtatee

transformation is

) =Wanly) = i;l(—l)x'ylx% (63)

V)| X)Xy (=1
1110)|[000)| © 1
1110/{|001)| © 1
1110|010 1] -1
1110|011 1] -1
1110||100| 1] -1
1110|100 1] -1
1110/||110)| 2 1
1110||111)| 2 1

TABLE V: Walsh transform with intitial qubit110)

For example, suppogg) is the 3-qubit stat¢110). Then the bit-wise dot products and signs
are shown in Table V. Thus we may write the output stateas
1

(/000) +]001) — |010) — |011) — [100) — [102) + |110) + [111))  (64)
_
VR

The transformation of qubits must lmitary. Recall that a matriXJ is unitary if its inverse

(10) +11) = [2) = [3) = [4) = [5) +[6) +[7)).  (65)

is equal to its complex conjugate transpode:l = UT. ThusUTU = 1. (For a Hermitian matrix
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M, MT = M, so a Hermitian matrix is unitary provided? = 1.) The Pauli spin matrices, the
Hadamard matri¥d, and the Walsh matri¥n are all unitary. A unitary transformation conserves

lengths of vectors. This can be seen if we compare the squared lergthafdU |y):

(wly) =yl (66)
(VU y) = (yl1]y) = |y]% (67)

One more unitary transformation we will need is the following:

Utly) = )1y +2 f(x)), (68)

wheref : {0,1} — {0,1}, and+, means addition modulo 2. Note tHaj operates on two qubits
atonce/x)|y). In this case, thé) qubit is considered theontrol qubit and does not change in the
operation;|y) is the data otargetqubit, and changes according to whettiéx) = 0 or f (x) = 1.

If f(x) =x, thenU; here is called the-NOT or XORgate, often denoted by the negation symbol

—. It takes the control and target qubits as inputs, and replaces the target qubit with the sum of the

two inputs modulo 2:
=[ly) = Xy +2%). (69)
Note for future reference with respect to the Grover search algorithm the effegt when
ly) =10) —11):

Ut[x) @ (|0) — 1)) = [¥) @[(10) — 1)) +2 f(X)]. (70)
For f(x) = 0 we have
%) @ [(10) = (1)) +2 F ()] = [x) @ [|0) = |1)] = [x) @ (=1)"¥(]0) - |1)). (71)
For f(x) = 1 we have
%) ®[(0) = 1) +2 F(x)] = [x) ®[|2) — [0)] = [¥) @ (=1)'™(0) - |1)). (72)
So, in summary,
Utlx) @ (10) - [1)) = [x) @ (=1)™(0) - |1)). (73)

Note that if we modify the definition of (x) so that it is defined on the whole domain
{0,1,2,---,2"—1}, f(x) : x € S— {0, 1}, then we can usé(x) as anindicator or characteristic

function, by lettingf (a) = 1 for somea € Sandf(x) = 0 for all x # a. Denote this version of (X)
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asfa(x), and the associated unitary transformatiolg$x)|y) = [x)|y+2 fa(X)). Then, as before,

we have
Ut,[x) @ (10) - 1)) = [x) ® (—1) =¥ (]0) - |1)). (74)

The Grover Search Algorithm. In computer science asracleis a black box subroutine into
which we are not allowed to look. An example of an oracle is our characteristic funiign:
x € S— {0,1}. It setsfz(a) =1 and otherwisefa(X) = 0, x # a. If fa(x) is able to operate
without our knowledge of wha is, thenf;(X) is an oracle. The values afmay be an unsorted
list—randomized telephone numbers for example (or ones which are sorted alphabetically by the
owner's names). The objective is to fiady relying on the output of,(x). If you hadN = 2"
items, the expected number of queriesf{(x) to find a with a probability of 50 percent would
be % Grover, however, showed a quantum computer could find the same item with a probability
close to 100 percent in aboﬁt\/ﬁ searches.

Suppose we are looking for the numlaemwherea is n-bits. We will want to use our indicator
function f5(x) as an oracle to help firal

Initial Preparation. First we prepare a qubit register witht 1 states, all of which ar):
0)[0) ---]0)|0)[0) ©10), (75)

where the tensor product has been explicitly written out for the right-most qubit to set it off from
the rest. We apply the Walsh transfovkin to the leftn |0) qubits and the simple transforkhoy
to the last qubit. As we have seen before,

2n_1
W) =Wan 0)[0) - 0)[0}]0) = %Z_ > i (76)
Ho0) = %2<|0> ), (77)

so that the state of the entire computer becomes

1 21 1
®Hoy|0) = —= X) ®—=(|0) —|1)). 78
V9 @Ho0) = = 5 1X1©75(0) ~ 1) (78)
Step One.We then apply our unitary transformatibh,

Urx) ®(10) = [2)) = ) @ (1) =®(|0) - |1)), (79)
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to obtain
1 2~
Vallve) @ Hx(0)) = “(10) - 1) (80)
_ 1\ fa(¥) _
—./—zn( 1) XZO|X>®72<|0> 12)). 81)

The effect ofUy, is to change the sign o) =

a) and to leave all the other superimposed states
unchanged. You may ask, how did the sigrl) 2 get transferred from the right-most qubit in
equation (80) to the superposition of qubits in equation (81)? The answer is that the right-most
qubit is allowed talecohereto interact with the environment and to ‘collapse’ if@or |1). This

forces the parameters that describe the bipartite state into thredetbit register.

Step Two.Apply Won again to the left-most qubits. (Or apply\on ® 15 to n+ 1 qubits, where
1, is the 2x 2 identity matrix.)

Step Three. Let fo(x) be the indicator function for the stape) = |0). Apply —Uy, to the
current state of the qubit register (note the negation). This operation changes the sign on all states
Ix) except for|x) = |0). That is,Us, maps|0) — —|0), and the negation df,, —Us, restores the
original sign on|0) , but changes the sign on all other states.

Step Four. Apply Won again to the left-most qubits.

Repeat Steps One to Fo@x/ﬁ times. Then sample the final state (the left-nmogubits)|yr ).

With close to probability 1|y;) = |a).

That's the Grover search algorithm, but what does it mean? What do Steps One, Two, Three,
and Four do? Short answer: they rotate the initial superpogigignabout the origin until it’s as
close as possible t@). Let's see the details.

Another way to think ofJ¢,, in Step One, is as the matrix- 2|a) (a| operating on the left-most
nqubits. Applying this operation t) yields|x) for all basis statek) # |a) but—|x) for |x) = |a).
Similarly, another way to think df)t,, in Step Three, is as the matrlx- 2|0)(0|. Applying this
operation tdx) yields |x) for all basis state&) # |0) but —|0) for |x) = |0).

Step One is, geometrically, a reflecti®y of |ys) about the hyperplane orthogonal |&) to
a vector|yg). SinceWj = 1, Steps Two to Four correspond td/\/anfOWZ‘nl. The operation
VVZHUfOWZ_nl would correspond to a further reflection [gfY) about the hyperplane orthogonal to
the original|ys) = \%n 52 5LX). However, this isn't what we want. Instead, |gt") be a unit
vector perpendicular tays). The operation-WonU¢, W, corresponds to a further reflecti®g of

|wE) about the hyperplane orthogonal|ug-). Call this furtherly reflected vectdiy). The net
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effect is a rotatiorReRa = —WenUt,Wan'Us, OF |ys) — lwe) in the plane spanned Bys) and|a).
(By the plane spanned bys) and|a) we mean all states of the foraws) +d|a), wherec,d € C.)
To summarize: Le® be the angle betwegws) and the unit vector orthogonal ta), the latter
a). Then the
combinationRsR, is a counter-clockwise rotation ofss) by 26, so that the angle betweéa')

designateda’). For simplicity we assume a counter-clockwise ordetatg), |ys),

and|ys) is now 3. That is,RsR, moves|ys) awayfrom |at), the vector orthogonal t@), and
hence movesys) toward |a) itself by the angle 8.

The whole idea of the Grover search algorithm is to rotate the Btgteabout the origin, in
the plane spanned bys) and|a), until |ys) is as close as possible f@. Then a measurement of
|ws) will yield |a) with high probability.

How much do we rotate (how many times do we apRiR,)? We don’t want to overshoot or
undershoot by rotating too much or too little. We want to rotgig around toja) and then stop.
Consider the vector or statgs) lying initially in the plane formed bya') and|a), with the angle

between ys) and|a) equal tod. That means we can writess) as the initial superposition
lws) = codB|at) +sing|a). (82)
After k applications 0RsR, = —WenU 5, W, 'U,, the state is
(RsRa)¥|ws) = cog2k+1)6]a’) +sin(2k+1)6|a). (83)
Note that if(2k+1)6 = %, thencog 2k +1)6 = 0, sin(2k+1)6 = 1, so that
(ReRa)*|ys) = |a). (84)

Now this may not be achievable, becaksaust be a whole number, but let’s solve for the closest
integer, where-]nint denotes nearest integer:
T 1
- [E - é]nint

Remember that the inner product of two unit vectors gives the cosine of the angle between them,

(85)

and that thenitial angle betweelfa) and|ys) is 5 — 6. Therefore

(alys) = % :cos(g—e) — sin(6). (86)

For N = 2" large, we can s&tin6 ~ 6. Thus, substituting\% = 6 into our equation fok, we
obtain

k= [ZVN - i (87)

4 2
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This value ofk, then, obtaingRsRa)¥|ws) = |a) with probability close to 1.

Grover search example Here is an example of Grover search foe 3 qubits, whereN =
2" =8. (We omit reference to quhit+ 1, which is in state\%(|0> —|1)) and does not change. The
dimension of the unitary operators for this example is thus-8 also.) Suppose the unknown

number isa) = |5). The matrix or black box oraclégs, is then

00
00
00
00
0 0O
0-100
0 010
0 001

- O O O O
o O o o

(88)

s =

O O O O ©o o o
O O O o o o +» O
o O O o © » O O
O O O O »r O O O

(Remember that numbering starts with 0 and ends with 7, so that the -1 here is in the Ep) for

This matrix reverses the sign on stéig and leaves the other states unchanged. The Walsh matrix
W is

1 1 1 1 1 1 1
-11-11-11 -1
1 -1-11 1 -1-1
1 -1-11 1 -1-11

(89)
1 1 1-1-1-1-1

-11 -1-11 -11
1 1-1-1-11 1
-1-11-11 1 -1

Il
N e
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The matrix—Uy, is

10 0 0 0 0 O O
0-10 0 O O O O
00 -10 O O O O
00 0-10 0 O O
—Us, = (90)
00 0 0-10 O O
00 0 0 0-10 O
00 0 0 0 0-10

This matrix changes the sign on all states ex¢@pt Finally, we have the repeated stegR, in

the Grover algorithm:

-31 1 1 1-1

1 1
1 31 1 1-11 1
1 1 -31 1-11 1
1 1 1 1 1 -31-11 1
i Rt T R R T O
1 11 1 1 3 1 1
1 1 1 1 1-1-31
1 1 1 1 1-11 -3
Theinitial preparationis
1
1
1
We[0)[0)]0) = —= | (02
V3|1
1
1
1
SinceN = 23 = 8 we calculate the number of rotatiokas the nearest integer:
K= EVB— M =2 (93)

4 2
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Thus, after the first rotation, the state becomes

1

1

1
RRAEI0)[0)[0) = = | (04)

2|1

5

1

1

and, after the second rotation,

-1

-1

-1
(RIRS)W6[0)10)[0) = = | (95)

8v2 | —1

11

-1

-1

Note that the amplitude fdb) is now7 A measurement ofRsRs)2Wg|0)|0)|0) will thus yield

|5) with probability(%i)2 = .9453,
The guess a number game.| Bob challenges Alice to the following game. Alice is to chose a

numberafromS={0,1,--- ,N—1}, and he is to attempt to guess it, with a certain number of tries

k. Alice acts as the oracléy, after each of Bob's turns. They agreeNnr= 230 = 1,073 741 824.

Alice knows that, classically, Bob will requn% 229 — 536,870,912 tries to guess the number

with a probability of 50 percent, so she agrees with Bob to allow up=td.00 000, 000, believing

that the advantage is all hers. Bob, however, intends to use the Grover search algorithm, and never

intends to guess more than= [%\/27)— %]nint = 25,735 times.

Bob initially sets upN + 1 qubits as

|ws) @ Hox|0) = Z) X © —[1), (96)
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as in equation (78). He presents the left-mogubits,|ys), to Alice. This is followed by Alice’s
move ofR,, followed by Bob’s play ofRs, and so on, until aftek moves the state of thequbit
system is:

(RsRa)¥|ws) = cog2k+1)6]a’) +sin(2k+1)6|a). (97)

The system is then measured and Bob wins with a probabilitisiaf2k + 1)8|2. To Alice’s
surprise she finds that Bob wins repeatedly, despite playing only a small number of his allowed
moves. (Bob’s probability of winning ip > 1— ﬁ.) After a number of games she realizes Bob
always plays the same number of mokes 25,735. She becomes suspicious that there is some
conspiracy afoot.

The Bernstein— Vazirani oracle. Previously we defined the bitwise inner produey. Let's

substitute foly a constant vectaa of Os and 1s, and lef®, : {0,1}" — {0,1} be defined as
fa(x,a) =x-a (98)
with an associated transform

TAIX) = (—1)Bv|x) = (—1)*x). (99)

This is the Bernstein-Vazirani oracle. How many measurement§ 0f,a) would be required to
find a? Classically you would have to perform measurements for all possible valuearaf then
solve a set of linear equations far But quantum mechanically solving faronly takes one step.

To see why, refer back to equation (63) and the calculation in Table V for the Walsh transform
of an initial statgy) # |0). Now compare the effect of the transfofiif}, on an equal superposition

of all states:
1 2n_1

1
T2 | ws) 1)*8|x). (100)
bV’ S \/— Z) bv| \/— Z) ’
This is just the Walsh transform of an initial stgg! Therefore we can finda) with another

application of the Walsh transform (which is its own inverse):

Won T ys) = [a). (101)

The guess a number game 1l Alice says to Bob, you are getting too many guesses. Either
change the game or | won'’t play anymore. Bob says: | don’t know why you are complaining. I'm
only making a tiny fraction of the number of guesses we agreed on. But I'll tell you what. | will

make onlytwo guesses—a preliminary guess, you will give me some feedback information, and
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then | will make a second and final guess of the number. The feedback | ng@dijplied as an
oracle to my initial guess. (Of course Bob plans to submii as his initial guess.)

Alice agrees, and the game proceeds as follows:

Bob: prepares|ys) = W|0---00) = 325X

Alice: TE|ws) = b 550" (—1)*3X)

Bob: Wan T3 |ys) = |a) .

Bob wins. Again, the key feature was the ability to present a superposition of states to Alice’s

oracle.

Shor’s factoring algorithm

Shor’s algorithm is a key result in quantum computation, so we want to look at it in some
modest detail. It will form the basis of the RSA game. We will need as preliminaries Euler’s
theorem and the quantum Fourier transfdfm

Euler’s theorem Let N be an integer, and letbe an integer less thaw and relatively prime

to N. Euler’'s theorem [54, chap. 12] says that
a’ =1mod N (102)

Hereg¢ is Euler’s totient function, and is the total number of integers lesskhtdnat are relatively
prime toN. Example: Let N = 77. In this case= 60, so0 28° =1 mod 77, 38° = 1 mod 77, etc.

Euler’s theorem implies that the powers of any number relatively prilNedgcle modN:
aa’as, --,a’ta’=1aa%a . (103)

Thus ¢ is the maximum length of a cycle or period. Of course, for a giaethere may be a
smallers < ¢ such that® = 1 modN. But in that case it is cleadivides¢. The smallest value

of ssuch that® = 1 mod N is called therder of a, which in the Shor algorithm below we denote
by r. Given knowledge o, or anysor r for a givena, we can factoN. Sincea? = 1 modN, we
have, for everp, (a% + 1)(a% —1) =0 modN. Letgcd(x,y) denote the greatest common divisor

of x andy. We then checlgcd(N,a% +1) andgcd(N,a% — 1) for a factor. If we don’t get a factor,

we divide¢ again by two (if the previous division left an even exponent), or else try another value
for a. Example: LetN = 77, anda = 2. We find that 8° = 1 mod 77, and upon division af by

2, also 2% = 1 mod 77. Hence we look at2modN = 43. We find thaigcd(77,44) = 11 and
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gcd(77,42) = 7. These are the two factors of 77. Obviously, this is not the best way to factor a
number, normally, but it is ideally suited for a quantum algorithm.
Quantum Fourier transform . The quantum Fourier transform looks a lot like the discrete
Fourier transform. For a given stdte the quantum Fourier transform is the unitary transformation
1 2"-1
Fly) =
v 2

In this definition, the ternxy denotes ordinary multiplication. It isot the bitwise dot product

/2 |x). (104)

x-y. Rather, ifjx) = 7 and|y) = 6, thenxy = 42. (By contrast, the dot productxsy = 7-6 mod
2=111-110 mod 2= 2 mod 2= 0.) Fy) is periodic inxy with period 2'. The Hadamard matrix
H we saw previously is simply the Fourier transform fioe 1. To see this, let x, y each be O or 1
in the term

1 /N
- e27r|xy/2 105
= (105)

wheren = 1. We obtain the matrix

1 (€ € 1 (11
— |l =—— , (106)
V2l e V2 11
remembering tha#™ = cogx) +isin(r) = ~14+0= —1.

The inverse quantum Fourier transfoRmn?* simply reverses the sign on

B 1 21 o N
Fiy) = Ve Z) e 2mxy/2 [X). (107)
X=

Shor's factoring algorithm. We want to find a factor of a numbak, where 2"~2 < N2 < 22",
Shor’s factoring algorithm on a quantum computer run®(flog N)3) steps. We need a quantum
computer with two registers (which we shall refer to simply as left and right). The left register
contains & qubits, and the right register contailtg),N qubits. The values of the qubits in both
registers are initialized t{®):

|00---0) ® |00---0). (108)

Step 1: Chosem, 2< m< N-—2. If gcdim,N) > 2, we have found a proper factor bf.
Otherwise proceed as follows, in Steps 2-5.

Step 2:Do a Walsh transforrid\,zn of the qubits in the left register to create a superposition of
all states in the left register:

22n_1
(Wozn ® Lyg,n) (|00 - - 0) @ |00- - - 0)) = [ys) ®[00---0) = Z)IX |00---0).  (109)
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Step 3:Apply the transformfm(|x) @ [00---0)) — |x) @ M modN):

22n—1
fin(| W) @ |00---0)) = —— > X modn) (110)

= o )
Note that at this point, if we measured the right register, or allowed it to decohere, it would collapse
into a given value o modN, such a&Z = n¥ modN. Hence, in the left register, all amplitudes

of states would go to zero, except for those statesch thatm* modN = Z. If, for example, the

order ofmwas 5, then the amplitudes of states would read something like:
---,0,0,0,c,0,0,0,0,c,0,0,0,0,c,0,0,0,0,c,0,0- - - (111)

The amplitude would be non-zero on evemh value. The states were previously in an equal

superposition with amplitud but the surviving values would now have amplitude approxi-

el
Vv/22n?

1 . . . . N .
matelyc = o This is the idea, although (following Shor), we don’t actually observe the right

5
register at this point. Instead we proceed to Step 4.
Step 4:Do a quantum Fourier transforfon the qubits in the left register:

1 22n_122n_l
(F @ 1)(fm(|ws) ®(00---0)) = —
m\|Ys ~on Xé ;

/2y & |m* modN). (112)

Step 5:0bserve the system registers. This will give some concrete valwédafy andm? mod
N for m* modN:
(F®1)(fm(|ys) ©100---0)) — |w,m* modN) (113)

with probability equal to the square of the associated amplitude:
|2—§n Y W (114)
x:mX=n? MOdN
Thus with high probability, the observedwill be near an integer multiple (ﬁf—n This ends the
guantum part of the calculation. We now use the result to determine the period
First find the fraction that best approxima%with denominator’ < N < 2"

L (115)
This may be done using continued fractions (see [29, chapter 12]).

Second tryr’ in the role ofr. If M’ = 1 modN, we have, for evem’, (m% - 1)(m% +1) =
0 modN. We then checlgcd(N, mz — 1) andgcd(N, m? +1) for a factor of N. In the event is
odd, or ifr’ is even and we don't obtain a factor, we repeat the By log N) times using the

same value fom. If that doesn’t work, we changa and start over.
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The RSA game

RSA is an encryption system widely used in banking and elsewhere. Consider the ring of
integersZy, whereN = pqgfor two distinct large primeg andqg. For encryption, RSA allows only
the units of Zy (i.e., eliminate all multiples op or g from Zy). The remaining set of integers,
called Zy,, is an abelian group under multiplication, with order (Euler’s totient functipry
(p—1)(g—1) = (n+1)—(p+0q). The RSA crypto system choses a relatively small odd integer
and calculated = e~ mod¢. A messagé in Z is then encrypted ag® modN, and decrypted
asMe9 = M?+1 = M modN. The numberg andN are publicly known, while the decryption key
d is known only to the message recipient.

Alice challenges Bob to the following game. She will create a publidkeyde, and encrypt a
messag®. The three componentsl, e, M®) will be sent to Bob. If Bob can decrypt the message,
M€ — M, within (log N)? steps, Bob wins $1,000. Else he loses $1,000.

Now RSA uses very large numbexs But we are going to use an extremely simple example
in order to illustrate the steps in Shor’s algorithm. We assume that Alice sends Bob the triplet
(77,11,67). We first note that 77= 5929, and $* < 5929< 24, The left quantum register will
need 14 qubits, while the right register will require 7 qubits.

Step 1: Bob randomly chooses = 39, where 2< 39 < 75. Thegcd(39,77) = 1, so Bob
proceeds to Step 2.

Step 2:In the left qubit register, Bob creates a superposition of all numbers from 0 to 26383
2141,

Step 3: Bob applies the transfornf,, which associates to each in the superposition,
the value 39 mod 77. Since 3% mod 77= 1, we havem* = 1 mod 77, forx € S=
{30,60,90,120,150,---,16380. That ism= 39 has period = 30. But Bob doesn’t know this
yet.

Step 4:Bob does a quantum Fourier transform on the left register, which contains the values of
X. He then observes both registers and gets 14, 770 for the left register state, a@d= 53 for
the value of 39mod 77 in the right register.

Bob now wants to find the fraction that best approxim%%gwith denominator less than 77.
This fraction is very close té%, so Bob trieg’ = 30, orr—2' =15. He gets 3% — 1 mod 77= 42,
39'° 4+ 1 mod 77= 44, andgcd(77,42) = 7, gcd(77,44) = 11. With these two factors in hand,
Bob calculates) = (7 — 1)(11— 1) = 60. Therefore for the decryption kel he wantsd = e~*



31

mod 60, which givesl = 117! mod 60= 11. The decryption key is the same as the encryption
key. (This is only a result of the trivially small moduldé= 77 we used.) Bob now decrypts
Alice’s encrypted messagé1®)d = 6711 mod 77= 23. Bob tells Alice the messagdé = 23 and
collects his $1,000.

Nash equilibrium and prisoner’s dilemma

We want to look at % 2 games that are not zero sum, and the traditional game theoretic concept
of Nash equilibrium, and to extend it to quantum games. Both Alice and Bob may gain from a
game, but may or may not do as well as some obtainable maximum. We assume both try to
maximize utility, orexpected utilitywith mixed strategies or uncertain outcomes, and that utility
can be assigned a cardinal number [23].

Non-zero sum games are traditionally presented in static form. A matrix of payoffs correspond-
ing to moves is given, and some notionegfuilibriumis presented, without explaining how the
players got to that point. But once they get there, they are expected to stay. That's because they
have adominant strategyhat indicates they are better off playing the corresponding move.

Let §A € Sa be moves (including convex combinations of simple moves, if appropriate) available
to Alice, ands,j_% € S be moves available to Bob. Therdaminant strategyor Alice is a movesy

such that the payofta to Alice has the property

7A(Sa,S5) > TTA(Sh. ) (116)

forall s, € Sa, Sé; € Sg, provided such a move exists. For an example, consider Table VI. Alice and
Bob each have two possible moves, labeled C (cooperate) or D (defect). The values in parenthesis
represent the payofts; the first number is the payoff to Alice, the second number is the payoff

to Bob. Clearly for Alicesy = D, because if Bob play8, 7a(D,C) =5 > 3, while if Bob plays

Bob C|Bob D

Alice C| (3,3) (0,5)
Alice D| (5,0) (1,1)

TABLE VI: Prisoner’s Dilemma

D, ma(D,D) = 1> 0. For similar reasongg = D also, so the game will be iequilibrium with

{sa,s8} ={D,D} and{n(sa), #(ss) } = {1,1}. This outcome is referred to &sisoner’s Dilemma
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because clearly Bob and Alice would each be better off if both played C, which would yield
=g = 3.
A Nash equilibriunmis a combination of movegsa, sz} such that neither party can increase his

or her payoff by unilaterally departing from the given equilibrium point:

A(SaSB) > TA(Sh, SB), (117)
78 (Sa, S8) > 7a(Sa, Sb). (118)

In Table VI,{D, D}, yielding payoffs{1,1} is a Nash equilibrium, because if Alice switches to C,
her payoff goes from 1 to 0, and similarly for Bob.

A payoff point {ma, g} is jointly dominatedby a different point{zx, 73} if ©x > ma and
ng > mg, and one of the inequalities is strict. In Table VI, the pdjfifl} is jointly dominated
by {3,3}. A pair of payoffs{na, g} is Pareto optimalif it is not jointly dominated by another
point, and if neither party can increase his or her payoff without decreasing the payoff to the other
party. In Table VI, the poin{3,3} is Pareto optimal, because unilateral departure from it by either
Alice or Bob decreases the payoff to the other party. What apbut}? Here, too, neither party
can increase their payoff without decreasing the payoff to the other party (indeed, neither can
unilaterally increase his payoff at all). Howevét, 1} is jointly dominated by{3,3}, so it is not
Pareto optimal.

An evolutionarily stable strategyESS) is a more restrictive notion than Nash equilibrium.
(That is, strategies that are evolutionarily stable form a subset of Nash equilibria.) Ssaitegy
evolutionarily stableagainsts; if 5 performs better thas; againsts + (1 —n)s; for sufficiently
smalln. The notion is that of a population playirggthat is invaded by mutants playirsy. An
ESS is then defined as a strategy that is evolutionarily stable against all other strategies. Note that
an ESS holds fon sufficiently small, sayj € [0,10). The valueny is called thenvasion barrier
For values of > ng, 5 no longer performs better thanagainst the combination, so members of
the population will switch te;. We will return to this concept in thevolutionarily stable strategy

gameconsidered later.

Escaping prisoner’s dilemma in a quantum game

We now have enough background to tentatively define a quantum gamemum gameé is

an interaction between two or more players with the following eleméntsl (H, A, {s }, {7 }).
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H is a Hilbert space/\ represents the initial state of the ganfs,}; is the set of moves of player
j, while {7 }; is a set of payoffs to playej. The object of the game is that of endogenously
determining the strategies that maximize the payoffs to playédn the course of doing so, we
may or may not determine an equilibrium to the game, and the vglo¢the game to playey.

We want, at this point, to give an introduction to ttpgantumversion of Prisoner’s Dilemma,
even though final details will be deferred until later. In the quantum version of prisoner’s dilemma
[20], each of Alice and Bob possesses a qubit and is able to perform manipulations on his/her own
qubit. Each qubit lies itd, which has as basis vectdfs) and|D), and the game lies iH, @ H»
with basis vectorsCC), |CD),

while Bob’s is the right-most. The game is a simple quantum network.

DC), and|DD). Alice’s qubit is the left-most qubit in each pair,

The initial state/\ of the game is
AN =U|CC), (119)

whereU is a unitary operator, known both to Alice and Bob, that operates on both qubits. Alice

and Bob have as strategic movgssg,

sp=Ua (120)
ss=Us (121)

whereUp andUg are unitary matrices that operate only on the respective player's qubit. After

Alice and Bob have made their moves, the state of the game is
(Ua®Up)U|CC). (122)

Alice and Bob forward their qubits for final measurement. The inverse of the unitary operator

is now applied, to bring the game to the state:
UT(Ua®Ug)U|CC). (123)

The measurement is then taken, and yields one of the four basis vedtbrsdf,. The associated
payoff values to Alice and Bob are those previously given in Table VI.

How Alice and Bob escape prisoner’s dilemma in this quantum game by selection of their re-
spective unitary matricdda, Ug depends on their playingntanglementelated strategies. There-
fore we will defer further discussion of the quantum prisoner’s dilemma game until we have con-
sidered entanglement in the next section. However, we wanted to make the poiatphed

guantum strategy is a unitary operator acting on the player’s qubit
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Entanglement

We have been considering vecttys in a Hilbert spacéd. The vector or statgy) is entangled
if it does not factor relative to a given tensor product decomposition of the Hilbert shgace,

H1®H2. For example, the state;) = a|00) + b|01) can be decomposed into a tensor product
[w1) = a00) 4+ bj01) = |0) ® (al0) +b[1)), (124)

so it is not entangled. On the other hand, the stede = a/00) + b|11) cannot be decomposed

into a tensor product, and is therefore entangled. Entangled states act as a single whole without
reference to space or time. Any operation performed on one entangled qubit instantly affects

the states of the qubits with which it is entangled. Entanglement generates ‘spooky action at a

distance’.

Instead of the orthonormal computational basis we have been using for Hilbert space, some-
times a different orthonormal basis, called tBell basis is used. The Bell basis is a set of
maximally entangled states. For two-qubitdHg, we can denote this entangled basis as

1

o) = ~75(100)+ [11) (125)
or) = =(103)+110) (126)
oz) = —=(100) = 111) (127)
bs) = —=(103) [10). (128)

It is easy to transform the computational basis into the Bell basis by using a combination of a
Hadamard transformatiod and a c-NOT gate. First apply the Hadamard transform to the left-
most qubit. Then apply c-NOT (review equation 69) with the left qubit as the source and the right
qubit as the target. Shorthand for this transformation(id ® 1):

1

~(H & 1100 — (0} [1))[0) = [bo (129)
~(H D0 — (0} [1)]1) — by (130)
~(H@D[10) — = (10) - 11)[0) — bz (131)
SHODID =~ (10) = [D)[L) — bs). (132)

We will now show how quantum entanglement can get players out of prisoner’s dilemma.
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Return to the quantum Prisoner’s Dilemma

Let’s return to the quantum version of Prisoner’s Dilemma. For consistency of notation, we
map|C) — |0) and|D) — |1). When we left the final state of the game, equation (123), it had the

form
lyt) =UT(Ua® Ug)U|00). (133)

When a measurement of the system is taken, it is projected into one of the four basis \@&tors
|01), |10), |11), with associated probability, yielding as expected payaffo Alice (refer to Table
VI):

Za = 3|(w1|00)[*+ 0] (wt|02) |* + 5| (wr|10)[* + 1 (y¢ |11) . (134)

The payoff probabilities depend on the final state of the game, which in turn depends on the unitary
matrixU and the player movdds andUg. Let’s consider each of these in turn.

The purpose of the unitary matrld is to entangle Alice’s and Bob’s qubits. Without this
entanglement the payoffs to Bob and Alice remain the same as in the classical game (namely, the
Nash equilibrium of (1,1)).

Let’s let our unitary matrid be (wherexn simply means the tensor productimes):

1
U=-"=(12+ic?). 135
5172 +i?) (135)
The inverse is
1
ut= —(1%2-icf?). 136
S5 —io?) (136)
Then, after the first application &f, the system state becomes:
U|00) = 1 (|00) +i]11)) (137)
=7 .

Now let’s first consider some traditional moves of Alice and Bob, either cooperate (apply matrix

Ua = Ug = 1) or defect (apply the spin-flip Pauli matiXy = Ug = oy):

1

2
1

2
1

2
(J11) +i|00)). (141)

both cooperate(l® 1)U|00) = —(|00) +i|11)) (138)

N

Alice defects:(ox® 1)U |00) = —=(|10) +i|01)) (139)

N

Bob defects(1® ox)U|00) = —(|01) +i|10)) (140)

N

both defect:(ox ® ox)U |00) =

Nis
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Then when we apply the inverse of the unitary transformatipnamelyl ~1 = U, we get

both cooperatet \F(‘O@ i|11)) = |00) with probability 1 (142)
Alice defectsU” f(\10> i|01)) = |10) with probability 1 (143)
Bob defectsU T7(|01> +i|10)) = |01) with probability 1 (144)
both defectU - (]11) +i|00)) = |11) with probability 1 (145)

V2

These correspond to the four classical outcomes in Table VI, demonstrating that the classical game
is encompassed by the quantum prisoner’s dilemma.
Now let's consider some less traditional quantum moves by Alice and Bob. For example,

suppose Alice play$ and Bob plays the Hadamard matkix
1 [ 1 . :
(1®H)U[00) = 5]0)(|0) +[1)) + 5[1)(|0) — [1)) = 5[|00) +|0D) +i[10) —i[1D)].  (146)
Then applyingJ T to the last equation we get the final state as

1 .
72(101> —i|12)). (147)

Since| \[]2 =5 and\ ]2 = 3, a measurement of the latter state will give Alice a payout of 0 or

UT(1e@H)U|00) =

a payout of 1 with equal probability, Stn = 0.5, 7g = 3.
Conversely, suppose Bob playsind Alice plays the Hadamard matiik

(H®1)U|00) = =[|00) + |10) +i[01) —i|11)]. (148)

NI =

Then applyingJ T to the last equation we get the final state of the reversed play as

1 .
72(110>—||11>). (149)

A measurement of the latter state will give Alice a payout of 5 or a payout of 1 with equal proba-

UT(H®1)U|00) =

bility, sowa = 3,7 = 0.5.
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We will summarize the remaining cases we want to consider:

(H ® 6x)U |00) = %HOD +]11) +i]00) —i[10)]  (150)

(0x @ H)U|00) = %[[10>+\11>+i\00> Jijon]  (151)

(H®H)U|00) = %HOO%L\1O>+101>+|11>+i\00> _i10)—iloD) +i[11)],  (152)
Ut(H ® 6,)U|00) = i2[|11> Li110)], %A= 37 =05  (153)

1
V2
UT(H @ H)U|00) = %[|oo> + 11 —i0)) —i[10)], Fa— Fs — 225 (155)

UT(ox®@H)U|00) = —[|11) —i|01)], Ta =05, 75 =3  (154)

Let ‘>’ denote ‘is preferred to’. Alice no longer has a preferred strategy. Wiile-a 1, if

Bob playsoy or H, thenH >4 ox. This is shown in Table VII. In addition, The payoff state

Bob1|Boboy| BobH

Alice 1| (3,3) (05) (3.3)
Alice oy| (5,0) (1,1) (3.3
AliceH| 3,3)| (3.3)[(23.2))

TABLE VII: Prisoner’s Dilemma with allowed quantum movesaf, H.

(1,1) corresponding tdoy, ox) is no longer a Nash equilibrium. However, the outco(mk, 2%1)
corresponding tdH, H ) is now a Nash equilibrium, although it is not Pareto optimal. Clearly the
addition of quantum moves changes the game outcome.

To induce Pareto optimality, let's expand the set of allowed moves to be membé&rs- of
{1,0x,H,0z}. The result is shown in Table VIII. The outcon@él,z%l) is no longer a Nash
equilibrium, but we have a new Nash equilibrium(3t3) corresponding tdo;, 6;). The payoffs
are equal to those of the non-equilibrium strategy p@lnt), so it is not jointly dominated. This
Nash equilibrium is Pareto optimal. End of Prisoner’s Dilemma.

What is the meaning of the unitary mattix that is applied at the beginning and end of the
game? That remains to be determined. Sometimes it is ascribed to a third player, a referee or a
co-ordinator. But there are other interpretations. Perhaps the best is that ‘it acts as a collaborator
to the players and serves to maximize the payoff at the Nash equilibria’ [10]. An Invisible Hand

in prisoner’s dilemma? More work is needed.
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Bob1|Boboy| BobH|Bob o,

Alice 1| (3,3) (05) (3.3) (1.1)
Alice oy (5,0) (1,1) (3.3)] (05)
Alice H| 31)| (31)|(2L.2)] (11.4)

Alice o;| (1,1) (5,0) (4.1} (3.3)

TABLE VIII: Prisoner’'s Dilemma with allowed quantum moves of, H, o,. The outcomg3,3) corre-

sponding to moveso;, 6;) is not only a Nash equilibrium, it is also Pareto optimal.
Battle of the sexes game: a quantum game with entanglement

The so-called ‘battle of the sexes’ game is not really a battle: it's a love fest with conflicting
values. Alice and Bob want to spend an evening together, and if they spend it apart, their respective
payoffs are{y,y}. As usual, Alice’s payoff is listed first and Bob’s payoff second. Alice prefers
to spend the evening at the Opera (O), while Bob prefers to spend the evening watching TV (T).
The payoffs for both at the Opera afe, 8}, while for both watching TV, the payoffs a{, o }.

It is assumedx > 3 > y. Alice and Bob are both at work at their respective jobs, and are not able

to communicate (no cellphones). Each plans to show up either at the Opera or at Bob’s house for
TV, in hopes of meeting the other at that place. The moves for each are thus members of the set
{O,T}. The game is shown in Table IX.

Inspection of the Table shows two Nash equilibria in moy&3;0) and (T, T). A unilateral
departure of either player from one of these equilibria results in a smaller payoff. Howeyver
there is a Nash equilibrium in each row for Alice, and in each column for Bob. So how does either

player decide what to do? In addition, there is a third hidden Nash equilibrium in mixed strategies

Bob O Bob T

Alice O| («,B)| (v,7)
Alice T| (7,M|(B,®)

TABLE IX: Battle of the Sexegsa > 3 > 7)

resulting from Alice playingO with probability p and T with probability 1— p, while Bob plays
O with probabilityq andT with probability 1— g, wherep andq are neither 0 nor 1. Calculation

showsp = a+l3 27, whileq= afpﬁ These probabilities give the expected payoffs to Alice and
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Bob as

_ ap-v¥
Ca+B-2y
In the corner Nash equilibria shown in Table 1X, one of Alice or Bob receives a payoffaid

7a(p,d) = 7s(p,q) (156)

the other a payoff off. Buta > 8 > wa(p,q). So both Alice and Bob are worse off in the third
Nash equilibrium.
To find this third Nash equilibrium, we first write Alice’s expected payoff given the assumed

probabilities of each move of Alice and Bob:

Ta=pga+p(l—-a)y+(1-p)gr+(1—-p)(1—-0q)B. (157)

Then, maximizing ovep,

2 — o+ (1-a)y—ay— (1- @) ~0 (158)

Solving the latter equation fag results inq = % A similar calculation maximizing Bob’s
expected payoff yieldp.
How do quantum strategies change things? Let'’s {@ap- |0) and|T) — |1),and then entan-

gle states by applying our unitary mattik

1
U=-—"—(1%%2+ic%?), 159
517 +i0?) (159)
to an initial statg00). Then, after the first application bf, the system state becomes:
1 .
U|00) = —(]|00) +i[11)), 160
00) \/EO ) +1[11)) (160)

as before. Both Alice and Bob knaw and the initial stat¢00).

We again allow Alice and Bob to make moves from the strategySset{1,ox,H,oc,} on
their individual qubits. And then we apply” to the result. The final states are those calculated
previously in Prisoner’s Dilemma, but the expected payoffs are different, as shown in the following
Table X.

The upper left-hand entries show the classical game is contained in the quantum game. The
only Nash equilibrium in the Table i3, o) corresponding tdox, ox). Alice and Bob spend an
evening watching television together, with Alice having a payoffdéss than Bob’s payoff of
o. At (oy, ox) neither Alice nor Bob can unilaterally increase his or her payoff, and since this set
of payoffs is not jointly dominated by another set of payoffs, it is also Pareto optimal. Television

rules!
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Bob1 Bob oy BobH Bob o,
Alicel]  (a,B) .7) Bty edry (B a)
Aiceo,|  (1.7) (B, @) Eem )

Alice H (ﬁ+y a+y)(ﬁ+y a+y)(a+gf2y,a+ﬁ+2y)(a+y ﬁ+y)

Alices,| (B, @) 1.7) (e Byl (a,B)

TABLE X: Battle of the Sexes Game with quantum moves. The Nash equilibrigf, i8) corresponding

to (ox, ox). Alice and Bob spend the evening watching TV.

It remains to consider mixed strategies. It is clear the four corner payoffs in the Table are the
extreme points of a convex set. So we only need consider consider convex combinafi@mslof

0. Alice’s expected payoff takes the form

Ta=pda+p(l-g)f+(1-p)af+(1-p(l-ga. (161)
Maximizing overp,
OTA
&—p=qa+(1—Q>ﬁ—qﬁ—(1—q)a=0- (162)

Solving forq givesq = 1. Similarly, p= 3. The mixed strategie&s1+ 10,11+ 30,) yield

a+f a+ﬁ)

payoffs of (=5~ At last equality between Bob and Alice! This Nash equilibrium is also

Pareto optimal, as it is not jointly dominated by eitlier 8) or (B, @).

Newcomb’s Game: a game against a Superior Being

Alice plays the following game against a Superior Being (SB). The SB may be thought of
as God, a superior intelligence from another planet, or as a supercomputer that is very good at
predicting Alice’s thought processes [4]. There are two bdgesandB,. B; contains $1000.

B, contains either $1,000,000 or $0, depending on which amount SB put in the box. Alice may
choose to take either both boxes or oBly If the SB has predicted that Alice will choose both
boxes, then SB puts $0 By, while if the SB has predicted Alice will take only bdg¢, then SB

puts $1,000,000 iB,. The game is depicted in Table XI. Alice clearly has a dominant strategy,
which is to take both boxes, as each payoff in the second row is greater than the corresponding
payoff in the first row. On the other hand, the dominant strategy conflicts with expected utility

theory (here utility is taken to be linear in the payoffs). Suppose the predictive accuracy of SB is
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SB predicts Alice will take only boB,|SB predicts Alice will take both boxes

Alice takes only boxB; $1,000,000 $0
Alice takes both boxes $1,001,000 $1000Q

TABLE XI: Newcomb’s Game.

p. Then according to expected ultility theory, Alice will be indifferent between taking both boxes
or only By if
p $1,000 000+ (1— p) $0= (1— p) $1,001, 000+ p $1000 (163)

For p > .5005 Alice would prefer the strategy of only taking Bx conflicting with the dominant
strategy. There are various ways to resolve this dilemma [4]. For example, if SB is omniscient
(p=1), then the Table has only two entries, $1000 and $1,000,000. So automaton Alice will choose
whichever SB has predicted, and the paradox is resolved.

But here we are interested in the quantum game [58]. SB surely knows the universe is based
on quantum physics, not on classical physics, which is only the biased view of beings who are
approximately two meters high. The quantum Newcomb’s game takes place in the Hilbert space
H1 ®H2, which we will take to be a 2-qubit space, with the left qubit denoting Alice’s actions, and
the right qubit denoting the actions of the SB. For 8B, represents the placement of $1,000,000
in box By, while |1) represents the placement of $(Bxn For Alice,
while |1) represents taking both boxes. The basis vectoitdiab H, are|00), |01), |10), |11),

0) represents takinB; only,

corresponding to the payoff states in Table XI.

The initial state of the game & = |00) if SB puts $1,000,000 in boB;, or A = |11) if SB
puts nothing irB,. The course of the game is as follow.

Step 1:SB makes its choice0) or |1). Once made this choice cannot be altered.

Step 2:SB applies the Hadamard matiikto Alice’s qubit; that is, the operatdét ® 1 to the
initial state/.

Step 3:Alice applies the spin flip operatay ® 1 with probabilityw or the identity matriXl® 1
with probability 1— w to the current state of the game. (These operate only on her own qubit.)

Step 4: The SB applieH ® 1 to the current state of the game, and the payoff to Alice is

determined.
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If the SB has chosel)), then the sequence of steps in the game is as follow:

1
(H®©1)j00) — —(100) +[10) (164)
w
W(o5 & 1(H© D]00) — (100, +[10) (165)
= (W(ox®1) + (1—w)(121))(H ©1)|00) — \ifz(|oo> +110) (166)
(H ®1)(W(Gx® l) + (1—W)(l® 1))(H ® 1)|OO> — ]OO). (167)

Thus Alice takes only boBy and receives $1,000,000. The SB has correctly predicted Alice’s
move.

If the SB has chosei), then the sequence of steps in the game is as follow:

1
(H ®1)|11) —>72(‘01>—|11)) (168)
w
W(o & D(H O DILL — (111 - [o1) (169)
= (Wox® 1)+ (1-W)(1®1))(H @ 1)[11) — %"’(\03 _ 1) (170)
(H®D)W(ox® 1)+ (1—w) (1@ 1))(H @ 1)[11) — (1— 2w)|11). (171)

The final value is maximized whem= 0. Thus Alice takes both boxes and receives $1,000. The

SB has again perfectly predicted Alice’s move. The SB did not require omiscience to achieve this
result, only a knowledge of quantum mechanics. By applying the Hadamard matrix (the quantum
Fourier transform) to the initial state of the game, the SB induced Alice to behave in a way so as

to confirm the SB’s prediction.

Evolutionarily stable strategy game

It seems that quantum games are played about us every day at a molecular level. Gogonea and
Merz [26] indicate games are being played at the quantum mechanical level in protein folding.
Turner and Chao [67] studied the evolution of competitive interactions among viruses in an RNA
phage, and found the fitness of the phage generates a payoff matrix conforming to the two-person
prisoner’s dilemma game. We want to briefly touch on some game theory aspects of biology.

The concept okvolutionarily stable strateg{ESS), which we previously defined in connec-
tion with the concept of Nash equilibrium, was introduced into game theory [64] to deal with

some problems in population biology and with the fact there may be multiple Nash equilibria. In
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Evolution and the Theory of Gampgl] Maynard Smith noted that ‘game theory is more readily
applied to biology than to the field of economic behaviour for which it was originally designed'.

Consider a population df members who are randomly matched in pairs to play a symmetric
bimatrix (i.e., 2x 2) game. Bysymmetrids meant the following. LeSbe the set of player moves,
and lets, sj be moves that are available to both Alice and Bob. Then Alice’s expected payoff
when she plays and Bob plays; is the same as Bob’s expected payoff if he playand Alice
playss;:

7A(S,S)) =7B(S),S)- (172)

That is, Alice’s payoff matriX1, is the transpose of Bob’s payoff matrikia = I'IE. This defines
the symmetry of the game. The game becomsaslutionaryif over time movess with higher
payoffs gradually replace thosgwith lower payoffs. In such a game, Maynard Smith and Price
[43] showed that a population which adopts an ESS can withstand a small invading group.

But what if the current population, in equilibrium while playing classical moves, is invaded by
a population playing quantum moves? This is the problem considered by Igbal and Toor [33].

Suppose the proportion of the population playing the ngua a symmetric bimatrix game
is pi, while the proportion playing the mo\g is pj. Define thefitness wof movess ands; as

follows:

w(s) = pim(s,s)+ pj7(s,sj) (173)
W(sj) = PiT(sj,s) + Pj7(s;, ). (174)

The first equation says the fithess of mayés a weighted average of the payoff to playigg
against an opponent also playiggand of the payoff to playing against an opponent playing
sj. The respective weights are the proportions of the population playiagds;. The second
equation is really the same as the first with indexes switched.

For ourquantum evolutionarily stable strategy game will assume that the symmetric bima-
trix game played between the two population groups is the Prisoner’s Dilemma game. The payoff
matrix for this game is that previously given in Table VI. Note that the payoff matrix of one player

is the transpose of the payoff matrix of the other player, which is required for symmetry. Note

1
v
also symmetric between the two players. For classical moves, the payof{si{sie} = {D,D}

also that the unitary matrid = (19?2 +ic°?) used in the quantum Prisoner’s Dilemma game is

and{n(sa),m(ss)} = {1,1}, which is a Nash equilibrium, is also an evolutionarily stable strategy.

Consider, however, the effect of an invading force of mutants playing quantum moves. For ease
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of reference, we will reproduce Table VIII here as Table XII. We will lab&loy} as classical

moves, and H, o;} as mutant moves.

Classicall|Classicaloy | MutantH |Mutant o,

Classicall (3,3) (0,5) (3.3) (1,1)
Classicaloy (5,0) (1,1 (3.3) (0,5)
MutantH (3.3) B2 @i2h 139
Mutant o, (1,1) (5,00 (4,1} (3,3)

TABLE XII: Population playing classical moves @f o, is invaded by mutants play the quantum méte

a later invasion of mutants plays and wipes out the previous mutants.

We see thaty is not evolutionarily stable against. Members playingy will die out and the
population will soon be comprised of mutants playthgThe new ESS will yield the payoff%to
either mutant party. If this new population is now invaded by different mutants playirthenH
is no longer an ESS. Members playiHgwill die out, and the population will soon be comprised
of mutants playings;. These mutants will enjoy a payoff of 3, and will appear fat and happy when

contrasted with the original population.

Card game: a quantum game without entanglement

The following game doesn’t use entanglement, but is heuristic for its mathematical setup, and is
good preparation for more complicated games that follow. Bob and Alice play the following card
game [17]. There are three cards, otherwise identical, except for the following markings: the first
card has a circle on each side; the second card has a dot on each side; the third card has a circle on
one side and a dot on the other. Alice puts the three cards in a black box and shakes it to randomize
the three cards. Bob is allowed to blindly draw one card from the box. If it has the same mark on
each side, Alice wins-1 from Bob. If the card has different marks on each side, Bob wihs
from Alice. Of course, two of the cards having the same mark on each side, Alice has expected
payoff Ta = %(1) + 3(—1) = 1, while Bob has expected paydts = 1(1) + 3(—1) = —3. The
game is unfair to Bob.

One way to make the game fair, in a classical sense, would be to allow Bob to look in the black
box and see the upper faces of the three cards before drawing one of them. Then if Bob saw two

circles facing up among the three cards, he would randomly draw one of those two cards, while if
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he saw two dots facing up, he would radomly draw one of the latter two cards. Since one of the
two cards with identical upside marks must have different markings on each side, this would give
Bob an expected payoffg = 0. The game would now be fair. However, we are not going to let
Bob do this. In fact, it's a black box so that han't look inside, but he can stick his hand in and
pull one card out.

Instead, to create the quantum equivalent of looking at the upper faces of all three cards, we
are going to 1) allow Bob to make a singieeryto the black box or qubit databage; and 2),
allow Bob to withdraw from the game once he sees the upper face of the card he draws. This setup
is highly artificial, and it is doubtful we are even describing the same game, but this quantized
version of the Card Game will allow us to make several heuristic points.

To describe the quantum game setup, let the card std@® behe card has a circle up, and)

if a card has a dot up. The three-card state can be written as

r) = [rorarz) (175)

wherery € {0,1}.

As part of Bob’s query, we will require the following unitary matti:

1 0
Uy = ( _ ) . (176)
O em'rk

Note that ifr, = 0, thenUy = 1, while if r, = 1, thenUy = 6. Now we apply the Hadamard matrix
H to Uy to form HUH and obtain:

1(1 1 1 0 11 1 1+€™k 1—emk
HUH = = _ == _ . . (177)
2\ 11 0 &7k 1 -1 2\ 1@ 147

Thus, applying this transformation to the stfg we get

1 [ 14+ 1%k 1 1 14+€™x 1+ &7k 1— g7k
HUH|0) = = _ . == . — 2 )+ 1)
2\ 1-e™ 14€™ | \ 0] 2\ 1-é&m™ 2 2

(178)

Note that ifry = 0, HUgH|0) = |0), while if ry = 1, HUKH|0) = |1). Thus,
HUKH|0) = |rk). (179)

So now let’s assume that Bob has a query machine that depends om)sitatke black box. The

machine has three inputs and gives three outputs. To determine the upside marks of the three cards,
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Bob inputs|000) to obtain:
(HUH @ HUKH @ HURH )|000) = |rorir2). (180)

So after Bob’s query, he knows the upside marks of the three cards: either some ele-
ment of the se§ = { 3-qubit permuations of|0),|0),|1)}} or some element of the s& =

{ 3-qubit permuations of|0), |1),|1)}}. If S descibes the state of the black box, then Bob knows
the winning card has a circle on the upside faceS,Iflescribes the state of the black box, then
Bob know the winning card has a dot on the upwise face. So now Bob draws his card, and gets to
look at the upside face only. If the drawn card has a circle on the upside face, and the black box
€ &, then Bob has an equal chance of winning. But if the black &, then Bob refuses to

play because he knows the drawn card is a losing card. A similar analysis applies when the drawn
card has a dot on the upside face.

So a query to the database shows Bob whether there are two circles or two dots showing face
up in the black box, and thus when he draws his card he knows that if it matches the two upside
marks, then he has a 50-50 chance of winning, while if the drawn card doesn’t matched the two
upside marks, the card is definitely a loser and he should exercise his option to withdraw from the
game.

With respect to entanglement, the operatdrand Uy form simple linear combinations of
gubits, while the quantum query machine is a tensor product of these operations. Hence there is
no entanglement of states in this game. ddual. note that that the general rule appears to be that
entanglement is required in static quantum games to make a difference from classical outcomes,
but not in dynamic games. The key is the ability of the player to affect the state of others’ qubits.

This can be done through entanglement or through the time steps of a dynamic game.

Quantum teleportation and pseudo-telepathy

Alice and Bob are seven light-years apart and share an entangled pair of qubifisg)say
%(|OO} +]11)). If Alice measures her qubit and finds it is in the stdlg then Bob’s qubit is
guaranteed to be in the std® also. If Alice finds by measurement her qubit is in the state
then Bob’s qubit will also be found in the stdtie. That is,Alice’s measurement affects the state
of Bob’s qubit As far as we know, this transmission of influence through the Bohr channel takes

place instantaneously. It is not affected by distance or limited by the speed of light. It is spooky
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action at a distance. It is also the basis for quantum teleportation.

Teleportation . The quantum teleportation protocol [2], by contrast, does not take place instan-
taneously, since it uses a classical channel as well as a Bohr (EPR) channel. On the other hand, a
guantum state disappears in one place and reappears in another: hence it is teleported. The tradi-
tional teleportation protocol works like this. Alice has an unknown quantum Bfetshe wants
to transmit to Bob. She will do this in two pieces: she will use an entangled Bohr channel, and
an additional classical channel to transmit some classical bits. Alice and Bob have made previous
arrangement to share an entangled pair of particles, this time say in the Belbstate

1
V2
The unknown state Alice is trying to transmit may be written in terms of unknown amplifydes
b, |aj®+ b2 =1, as

[b3) = —=(/01) —[10)). (181)

[w) = a/0) + bl1). (182)

We may write the initial state of the 3-qubit system as:

) ® |bs) = (a|0>+b|1>>®(%(|01>— 110))) (183)
a a b b
= 72'001>_72|010>+ﬁ|101>_72|110>' (184)

We want to rewrite this state in terms of the Bell basis, for reasons that will become apparent. To
do this, we take the inner product pf) ® |bz) with each of the Bell vectors in order to find the
multiplier on each Bell state. Note that we take the inner product witlvibdeft-mosigubits in

equation (184). These qubits are under the control of Alice.

(Bol(1y) @ [bs))) = +512) ~ 210 (185)
(oul(1) @ Ios))) = —510) + 211 (186)
(Bol(1w) @ Ios))) = + 511 + 210 (187)
(B3l ) @ b)) = ~910) — 1), (188)

Using these residual state multipliers, we can then write the gjate |bs) in terms of the Bell

-b —-a +b —a
[( ) |bo) + ( ) Ib1) + ( ) |b2) + ( ) bg)]. (189)
+a +b +a —b

basis:

NIl -

W) @ |b3) =
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Now let’s rewrite the last equation in terms ok2 matrices:

1./0 -1 a -10 a
llf>®b3>§[(1 0 ) (b) bo>+( 0 1) (b) by) + (190)
01 a -1 0 a
( )( )>( )( )bsﬂ. o
10 b 0 -1 b

We can rewrite this again in terms of the Pauli spin matrices:

bs) = ~—ic, [ & |16 “Vio i AT e TS 192
|W>®|3>—§[—'Gy o bo) — 07 ] b1) + ox ] o) — o bs)]. (192)

Now, to teleport her qubit to Bob, Alice must couple the unknown gtatewith her member of

the entangled qubit pair. To do this she makes a joint (von Neumann) measurement of these two
qubits, which comprise the two left-most qubits|gf) ® |bs). Alice’s measurement projects her

two qubits into one of the four Bell states. This destroys the unknown |sgatéBut not to worry.

Alice’s measurement also leaves Bob’s qubit in one of the following four states:

ly) ®|bz) — |bg) = Bob’s qubit = —ioy Z (193)
y) ® |bs) — |by) —> Bob's qubit = o, Z (194)
y) ® bs) — |bp) —> Bob’s qubit = ox Z (195)
|w) ®@|bg) — |bg) = Bob’s qubit = -1 ( Z) . (196)

Alice then, through a classical channel, transmits to Bob the results of her measurement: i.e.,

the Bell state she obtained. Then Bob applies the corresponding spin operator (which is its own
a

inverse) to his qubit to recover the stage = - ioy for |bg), —o; for |by), o for |by), or —1
b

for |bs). (Actually, the overall signs [signs that multiply batrandb equally] don’'t matter, since
—|y) is the same state &). So, for example, multiplication bg; or by 1 is sufficient.)
To summarize, Alice and Bob share an entangled $@&teof two qubits. Alice wishes to

teleport an unknown states) to Bob. To do this, she first performs a measuremenyof |6)
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in the Bell basis on her two qubits (the unknown state, and her qubit in the entangled state). She
transmits the information of which Bell state she obtained to Bob. Bob applies the corresponding
Pauli spin operator to his qubit and recovers the unknown gjgte

Pseudo- telepathy . ‘Entanglement is perhaps the most non-classical manifestation of quan-
tum mechanics. Among its many interesting applications to information processing, it can be
harnessed teeducethe amount of communication required to proces a variety of distributed com-
putational tasks. Can it be useddbminatecommunication altogether? Even though it cannot
serve to signal information between remote parties, there are distributed tasks that can be per-
formed without any need for communication, provided the parties share prior entanglement: this
is the realm opseudo-telepathy|5]

Consider the following®>seudo-Telepathy Ganfig; betweenN players. Since there are more
than two players, we can't call them Alice and Bob, so we’ll let them all be subscript Alices:
A1,Az,--- ,An. There are also two functions andg, each of which takeN-qubit inputs. The
game has the following steps.

Step 1 The players mingle, discuss strategy, share random variables (in the classical setting)
or entanglement (in the quantum setting).

Step 2 The players separate and are not allowed to engage in any form of communication.
Each playe® is given a single qubit inpug and requested to produce the single qubit ouyput
The playerswin +1 if

f(x1, %2, -, %n) = 9(Y1, Y2, IN)- (197)

else they lose this amount. The functidnandg are defined as followings. Players are guaranteed
that the sum of the qubits they are given is an even numpex; is even. (Think of what this
means. Ify;x is even, then it is divisible by 2. ThL%zi X; is a whole number that is either odd
or even. If odd, thel% Yixi mod 2= 1. If even, ther% YiX mod 2= 0. But the latter case means

% YiXi mod 2 is also divisible by two, so that the original sifin was divisible by 4.) The players
are asked to produce an even sum of output jtg if and only if the sum of the input bit§; x;

is divisible by 4. Thus the criterion for tHé-players to win is:
1
IZyi mod 2= 5 .ZXi mod 2 (198)

The left-hand side of this equation gsand the right-hand sidé. A win depends solely on the
global state of thé&l qubits, even though each player controls only 1 qubit, and is not allowed to

communicate with the other players. Note that the expected payoff to the players if anyiplayer
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randomizes the submission ypfis 0, as mod 2 produces only two outcomes. This is a very nice
game, because it highlights the issue of cooperation between players, and because the game is
scalable to any numbét of players.

Now, the amazing thing is that if the players are allowed to share prior entanglement, as in Step
1, then they always wify. To see how they do this, we need as components the Bell #tgjes
and|by), the Hadamard transforid, and the unitary or rotation matrix introduced in the Card

Game, except here we will define it as:

10 10
Uz = = , (199)

remembering thatog %) +i sin(3) = i. Note thatJz|0) = |0) butUz[1) =i |1).
SinceN players share the entangled Bell states, the latter will have té-gebit Bell states.

Let’s write ourN-qubit Bell states in the following simplified form:

Ny N N
) = (10" + 1) (200)
) = —=(10") — [1). (201)

The firstN-qubit stateiby) is the entangled state that all players agree to share. The second state
may evolve in the course of play.

Consider now the effect of the unitary matrix operating on a single quiiof

Uslb) = (10 +i 1) (202)

The powers of arei, i?=—1,i3=—i,i*=1. So if Uz is applied to two qubits, the sign on
|1N) becomes-1, and thusbl)) — |b)). If applied to four qubits, the sign is unchanged, so
IbY) — |bY). So if mplayers applys to their individual qubits, the initial statd))') will remain
unchanged ifm= 0 mod 4. Ifm= 2 mod 4, therjb})) — |b}).

If each player applies the Hadamard matrix to his qubit when the entangled s’tla@é,ishe

result is a superposition of all stategth an even number of 1 bits

1 N_1
(HaM)log) = o= b (203)

Note that this doesiot mean the stately) in the summation are even numbers. For example,

|102) = |5) is an odd number, but has an even number of 1 bits, whd€&) = |4) is an even
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number, but has an odd number of 1 bits. To see thaNtfi@ld Hadamard transform (the Walsh
transform) turns Bell statj@'5‘> into a superposition of even-bit numbers (meaning an even number

of 1 bits), consider Table Xlll, which is an analog of Table V. Note that the minus signs appear on

b)| [y} [b-y|(—=1)"Y
1111)||000)| © 1
11D (j00D| 1] -1
1111|010 1| -1
1113)|011)| © 1
1111||100| 1| -1
1111 |]100| © 1
1113)||]110| © 1
1111||110| 1| -1

TABLE XIlI: Walsh transform with intitial qubit|111)

the numbers with an odd number of 1 bits. So if we agplywp H ® H) to %(|OOO> +1]111)), we
get 5 (10) + 1) +2) + [3) + [4) + |5) + [6) +[7) +10) — 1) — [2) +[3) — [4) +[5) +16) — 7)) =
\%(]O) +13) + |5) +6)), a superposition of numbers all of which have an even number of 1 bits.

If the state has evolved to the stabg'> due to player action, and each player applies the
Hadamard matrix to his qubit, then the result is a superposition of all odd bit states (meaning

states with an odd number of 1 bits):
1 N_1

(He)[bY) = V=N y\y>- (204)

So here, then, are the steps each player takes with respect to his or her qubit in tHgygame

Player Step 2alf a player receives qubk; = 1, the player applietsig to his or her qubit in the
entangled Bell stattbw. Otherwise the player does nothingonsequenceBecause the sum of
bits ¥; x; is even, an even number of players will perform this stegy; ¥ is divisible by 4, then
the Bell statgbl) is left unchanged. But if; x; = 2 mod 4 therjb))) — |b})).

Player Step 2bEach player applies the Hadamard matiixo his or her qubitConsequence:

If the entangled state is still in the stdtn%'> from Step 2a, then this present step transforms the

entangled state into a superposition of @lenbit states. But if the entangled state has been
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transformed intdb}'), then this step transforms the entangled state into a superpositioroatall
bit states.

Player Step 2cEach player now measures his qubit in the computational b@sisq. |1)) to
producey;.

If ¥ix was divisible by 4, the entangled qubit is in a superposition of even bit states, so will be
projected under the measurement into a number with an even number of 1 bits. The players win,
becausg;yi mod 2= 0. If 3;x = 2 mod 4, then the entangled qubit is in a superposition of odd
bit states, so will be projected under the measurement into a number with an odd number of 1 bits.
The players win again, becausey; mod 2= 1.

The players have demonstrated pseudo-telepathy by acting as though each knew what the other
was doing, even though there was no communication between players. This was made possible by
the shared entangled stalt%‘) acting as a quantum invisible hand.

We may characterize this pseudo-telepathy game in terms of tradiblspatson game theory
as follows. No player can secure any value by himself, so the value of a one-person cdgjition
is 0: v{i} = 0. The value of the coalition of all players is¥(N) = 1. Such a game is said to be
in (0,1)-normalization Let Sbe a subset of the set of playéis If for all SC N eitherv(S) =0
orv(S) =1, a game is said to bl@mple Thus the pseudo-telepathy game is also simple; indeed
v(S) = 0 for all SsaveS= N. Finally, a game is said to be constant sum(8) + v(N — S) = v(N).

The pseudo-telepathy gamenist constant sum, agS) +v(N —S) = 0 for S# N, butv(N) = 1.

The set of imputations for this game is the set of probability ved®ees{ p1, p2,- -, pn}. This
fulfills the requirement tha¥ .y pi = V(N) = 1, and also the requirement that> v({i}) = 0, for
all i € N. None of these allocation vectors is dominated by anothe$ foiN. Thus thecore of

this game is the convex set of probability vectBrs

Quantum secret sharing

The IRA has some secret information they want to preserve among their members, but are
fearful that some of them may be MI5 informants, and that others may be arrested and reveal what
they know under interrogation. So they need a secure way to embed the secret among themselves.
A (k,n) thresholdscheme [11] is one in which ark/< n members can reconstruct a secret, but
k— 1 members cannot finghyinformation about the secret at all.

Let’s first, however, consider a simple example where two parties must cooperate to discover
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a secret quantum state [31]. Alice, Bob, and Gerald share the following entangled state (the left

gubit is Alice’s, the right qubit is Gerald’s):

1

) ﬁ(!00®+|111>)- (205)
First note we can rewrite this in terms of a different basis. Let
) = (10 +11) (206)
1
X7) = 72(|0> —[1). (207)
This implies the reciprocal relations
0) = () ) (208)
_ Lo e
!1>—\/§(\X> X)) (209)
So the original state in terms of the new basis would be
L et —y— +y— —t _
lv) = 2\/z[(lx XT) +XEXT))(0) + (1) + (X7XT) + [xx7))(10) = [1))]. (210)

Alice wishes to send a secret qubtecrep = a@0) + b|1) to Bob and Gerald in such a way that
Bob and Gerald must cooperate in order to learn the secret. She essentially does this through the
teleportation protocol, but we will also need the definition§®f), |x)) for part of the procedure.

Alice combines the secret quibiisecrey With the shared statey) to form the overall state
1
|9secred @ |y) = 72(a|oooq +b|1000 +aj0111) +b|1111). (211)

Alice now rewrites this in terms of the Bell basis. The multipliers on the Bell states are:

(0ol (| 9secred © W) = 2100) + S/11) (212
(01| 9secred © W) = 2[11) + 2100 (219
(0ol (| 9secre © W) = 2100) — 2111 (219
(03| 9seced ) = 9111) — 2/00) (215)

Alice now measures her two qubits in the Bell basis, sends the result to Gerald, and tells Bob to

measure his qubit in th@x™), |x~)) basis. After Alice’s Bell measurement, the qubits of Bob and
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Gerald will be in one of the following states:

Ibo) — a/00) + b|11) (216)
Iby) — a/11) + b|00) (217)
Iby) — a/00) — b|11) (218)
lbg) — a/11) — b|00). (219)

If Bob gets|x™) upon his measurement, then Gerald’s qubit becomes

aj00) +b|11) — a|0) + b|1) (220)

a|11) +b|00) — a|1) + b|0) (221)

a/00) —b|11) — a|0) — b|1) (222)

a|11) —b|00) — a|1) — b|O) (223)

while if Bob gets|x ™), Gerard’s qubit becomes

a/00) + b|11) — aj0) — b|1) (224)

a|11) +b|00) — —a|1) + b|0) (225)

a/00) — b|11) — a|0) + b|1) (226)

a|11) — bj00) — —a|1) — b|0). (227)

To reconstruct Alice’s qubit, Gerald needs to know what measurement Bob obtained, so that Ger-
ald can apply the appropriate Paul spin matrix to his final qubit state. Thus Gerald and Bob together
can reconstruct Alice’s qubit, but neither can do so alone. The appropriate Pauli spin matrices to

be applied to Gerald's final state are:

Bell\ Bob| [x*)| |x™)

) 1 o
)| Ox|0xOz
bo)| oy 1
|b3) | 020% | —Ox

TABLE XIV: Pauli spin matrix to be applied to Gerald’s final qubit state

Now that we have seen the close relation of quantum secret sharing to teleportation, at least

in one example, let's return to th, n) threshold notion, and consider an example dR&3)



55

threshold scheme. This scheme works by splitting up a state among three parties in such a way
that any two can reconstruct the original state. We begin with an unknown secret state that is not
a qubit, but rather gutrit. A qutrit is a ternary ‘trit’ that can take values in the three-dimensional
Hilbert space spanned i§0),|1),|2)). We've simply added one more dimension to a qubit. Note
that for this example, tensor products expand by powers of 3, so 3 qutrits occupy a Hilbert space
of dimension 27H,7 = H3® H3® Hs.

We have an secret stdt®ecrey = @|0) + ]1) + 7|2). We have an encoding transformation that

maps this 1-qutrit state into a mixed 3-quitrit state:

|9secred — 0¢(|000) +[111) +[222)) + B(/012) +|120) +[20D)) + 1(|021) +[102 +[210)).
(228)
Now we can split this mixed 3-quitrit state between Alice, Bob, and Gerald. The left qutrit belongs
to Alice, and the right qutrit to Gerald. Given their qutrits, no one has any idea about the original
state, because the state they posses has an equal mixiOre |@f, and|2). However, any two
people can reconstruct the secret statecep. For example, Alice and Bob get together. Alice

adds her qutrit to Bob’s modulo 3, then Bob adds his (new) qutrit to Alice’s. The result is the state
(|0) + B[1) +712))(|00) +|12) + [21)). (229)
To see this, let’s consider just the multipliers @nWhen Alice and Bob get together, they have
0 (|000) + |112) 4 [222)) + - -- . (230)
Adding Alice’s qutrit to Bob’s modulo 3 we get
a(|000 + [111) 4 |222)) 4 --- — a(|000) 4 |121) 4 |212)) - - - . (231)
Then adding Bob’s (new) quitrit to Alice’s we get

a(|000) +(122) + |212)) +--- — «(]000) + [021) + |012)) + - - - (232)
= (a]0) +---)(]00) + |12) + |21)). (233)
Alice’s quitrit is now identical with the secret stdt®ecrep, Which has been disentangled from the

other qutrits. By a similar process Gerald and Bob could recover the secret state, or Alice and
Gerald.
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The density matrix and quantum state estimation

The ‘No Cloning Theorem’ forbids a quantum copier of the following sort: the copier takes
one guantum state as input and outputs two systems of the same kind. The no cloning theorem
got its name after Nick Herbert proposed a faster-than-light communication device, published
in Foundations of Physice 1982 [30]. This generated widespread attention and a flaw in the
argument was soon found: the device required quantum cloning, and there were problems with
producing identical copies of a quantum state. (Further background is found in [56].)

However, that is not the whole story. Preparing virtually identical copies is no problem, if
we don’t try to do it in a single measurement. By statistical procedures the input state can be

determined to any degree of accuracy. For example, for the unknowngiate
ly) =al0) +b1) (234)

repeated measurementro$uch prepared states in the computational basis will y@ld, times
and|1) ny times, wheren, + np = n. Then clearly

Na 2 2

= fa = |(y]0) (235)
Np
= =~ bl = [(w|1)]* (236)
That is, then measurements will yiel@xs,Xo, - - - ,Xn), Where eaclx; is either 0 or 1. This corre-

sponds to a set of Bernoulli trials whose Likelihood Function is
n
L(p)=:|'lp”q1‘“:: pigh 2, (237)
i=

where p is the probability of 1 amgl= 1 — p is the probability of 0. Maximizind-(p) yields the

estimate forp as
A 1 Np

This leads to the statistically-basddnsity matrixp:

fa n 10 np [ 00 n Ny
p=| " == +— = —2|0)(0] + | 1)(1]. (239)
0 =k nN\oo n\oi1 n n

n

From the statistical point of view, the quantum state is a mathematical encoding of all data that

can be collected this way.
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Before proceeding further we need to explain the differences betpaerstates ananixed
states. If a quantum state) is a convex combination of other quantum states, it is said to be in
amixedstate. Note that mixture involves classical probabilities or combinations, not amplitudes.
But if a state]y) cannot be expressed as a convex combination of other states, it is said to be in a
purestate. Pure states are the extreme points of a convex set of states.

For a pure statg)), the ket-brd¢)(¢| is called gprojection operator It projects|¢) onto itself
(|¢)(o]|9) = |0)), and any statéd) orthogonal to|¢) is projected onto 0|)(¢|0) = 0). For a
pure statep, the density matrix is simplp = |¢)(¢|. For a mixed state, where the system will be
found in one of the extreme poinfig;) with probability p;j, thedensity matrixp is defined as the

sum of the projectors weighted with the respective probabilities:
p =" pjlo;) (el (240)
]

Since the probabilities are non-negative and sum to one, this npeana positive semidefinite
Hermitian operator (the eigenvalues are non-negative) and the trac@hef sum of the diagonal
elements of the matrix, i.e. the sum of its eigenvalues) is equal to one.

For example, let the pure statg) be |y) = a|0) + b|1), wherea andb are complex numbers

with respective complex conjugatasandb®. Then the density matrig for |y) is

aax abx
p=ly)(yl= ( ) : (241)
bax bbx

V2
i . (242)
3

A measurement ofy) in the computational basis will yielfD) with probability Z or |1) with
probability 3. These probabilities are found in the tracepofWe may rewritep asp = 3(0) (0| +
%]1>(1|, losing any information in the off-diagonal elements. (This is what happens, as we shall
see, during cloning.) Note thafter the measurement, then eithjer) = |0) with probability 1, or
|w) = |1) with probability 1.

As another example, suppo%e)f the states in an ensemble of states are prepared in the state
|y1) = .8|0) +.6|1), while% are prepared in the statg,) = .6/0) —.8i|1). Then the density matrix
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for this mixed ensemble, using equation (240), is

57 .36+12
) . (243)

p = 75y1) (1| + . 25y2) (y2| = _
36— 12 43

A particle drawn from this ensemble and measured in(tBg|1)) basis will be found in state

|0) with probability .57 or in statel) with probability .43. But if we wanted to use to find

the probabilities for aifferent basis, we would need the off diagonal elements as well as the
trace. To see this, suppose we draw a particle from the same ensemble and take a measurement in
the orthonormal basi§¢1), |¢2)), where|¢;) = .6/0) +.8|1) and|¢2) = .8|0) — .6/1). Note that

(¢1]02) = 0 and|(d1]¢1)|> = |(¢2]¢2)|> = 1. Thenp gives as the probabilitieB of observing ¢; )

and|¢,) as

P(1¢1)) = (.6, .8)p (':) = .826 (244)

P(l¢2)) = (-8, —-6)p ('86) =174 (245)

Suppose we choose an observablesuch as the spin state of an electron. Then in the von
Neumann formulation of quantum measurement, each observable is associated with a Hermitian
operatorA, with Aly;) = aj|y;), where|y;) are the eigenvectors &, anda; are the eigenvalues.

Thus, using the same basis fpandA, namely the eigenvectors 8f we have
Ap:;ijIWWjIzzpjaj!wn(w (246)
Now the expected value & A, is simply
A= Z P a. (247)

Thus the latter may be represented as

A= trace(Ap). (248)

There are many approachegjiwantum state estimationa the density matriy. The problem
of state estimation is closely related to the problem of cloning, and is connected to issues of
entanglement. Thmaximum likelihoodpproach considered earlier is probably the best. For the

heuristic purposes of this essayayesianframework [63] is revealing. We might start with the
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principle of indifference, or insufficient reason, and make the initial assumption that the density

matrix has the fully mixed form (for a system ki):

1 30
p:—l:
2 O%

(249)

This corresponds to an ensemble, half of which are in an up state and half of which are in a down

state:
1 1 1(1 1(0 1(10 1({00 1
p = uyul+5[d){d] =5 0 10+3 L 01)=3 00 t3 01 =51
(250)

Or we may start with the general form of the density matrix, which can be written in terms of

the Pauli spin matrices and real numbegs'y, andr; as follows:

1
p= §(1+r-6) (251)
1

_ % 1+.rZ rx —iry . (253)
rx+iry 1—r;
Here we require that the determinantmbe non-negativejet p > 0, which implies%1 [1—(r2+
ré+r2)] >0, or thatr? = rf +rZ +rZ < 1, so that each density matrix may be associated with a
ball of radius 1, called 8loch spherePoints on the surface of the ball correspond to pure states,
while interior points correspond to mixed states.
If we assume this form of the density matpxand then measure spin in thédirection, obtain-

ing a series oh resultsu andd with frequencies,, andng, then the likelihood is

L) = [+ VG- ™) (254

Now consider the followingstate Discrimination GamEgy. There areN states, members of
the setS= {|yj), j =0,1,--- ,N—1}. Each of these states is represented by a density matrix
pj = Njlvj)(y;j|. Alice prepares a stafg, unknown to Bob, and forwards it to Bob, along with
the information that the associatpg) is a member o6 She also tells him the probabilitieg
of each state is.

Then; are calledorior probabilities. This, of course, immediately suggests a Bayesian frame-

work, so let's consider a Bayesian strategy catiedntum hypothesis testifi@]. Because there
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areN states, Bob will follow a procedure that gives hinoutcomes, which we will labed;. If
Bob obtains outcomay, he will assume that the state he was sentpyasThere is error probabil-
ity pe thatpm # px and probability - pg = pp thatpm = p«.

To complete the game description, we need to definecti@nel matrix[h(am|pk)] which
expresses the probabilities that Bob will fiagl given thatp, was sent, and theost matrix[Cny
which assigns a cost to making the hypothagjsvhenpy was sent. No matter whaf was sent,

Bob’s measurement will yield one of tlag,. This gives rise to the completeness condition that

N
S h(ampk) = 1. (255)
m=1

Then the total error probability is

N
pe =1- % mh(aklpk)- (256)
K=1

The average amouig Bob will pay Alice is given by the Bayesian cost matrix
Cg = Z(nkcmkh(am’l)k)- (257)
m

Bob’s goal is to minimizecg. The only thing Bob controls are the elements in the channel matrix
h. Thus Bob’s problem is

minp Z{nkcmkh(am]pk). (258)
m

This puts quantum stagdiscrimination(finding a state in a given set of states) in the context of
game theory. If we set the diagonal elements of the cost matrix equal to O (Bob pays nothing
for being correct) and the other elements equal to a constéalt errors cost the same) then,

comparing equations (256) and (257), Bob’s problem reduces to
miny pe. (259)

The number of states here is finite. By contrast, in quantum stditationthe set of states is
infinite. Since a quantum state itself is not observable, quantum state estimation means estimating
the density matrixp of the quantum state, as we have already seen. This, too, can be put in the
context of game theory.

In the State Estimation Gami@8] Alice chooses an arbitrary pure statge) € Hy and sends
ly)®N to Bob and|y) to a referee. After receiving the states from Alice, Bob performs a

measurement on them and then sends a pure|gtate the referee. After receiving the two states
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from Bob and Alice, the referee compares them according to some criterion (see cloning, below),
then awards a payoff to Alice if the two states are not sufficiently close, or to Bob if they are. Of
course Bob’s task is to construct the best quantum state measurement he can giestates

received from Alice.

Quantum cloning

In econometrics one tries, by some procedure, to produce an estirobgmrme unknown pa-
rametera. This can be considered an attempt, by our estimation procedwlentthe parameter
a. We don’t expect to achieve a perfect clone, but only a best estimate that lies within an interval
of uncertainty. Which brings us to the cloning of quantum states. The objectogtamnal cloning
device[69] is to prepare near copies as close to the original as possible.

Optimal cloning can be formulated in terms of a quantum gameCtbhaing Game played
between Alice and Clare, the cloning queen. This game will INwugput systems ani¥l output
systems. We start with Alice, who has a pure state described by a density pniat@xdimensional
Hilbert spaceH,. She is going to run her state preparing proceduirgmes, giving rise to a

composite system in Hilbert spate@N:
LeNp=paN. (260)

Alice then shipsp@N off to Clare. Clare uses a cloning devi®g of her choice to produce
M output system3mp@N. Next, Alice producesV copies of her original systenp@M. The
outcome of the game depends on

Tmo &N vs. p @M. (261)

Since Ty, maps density matrices to density matrices, it is restricted to being a linear completely
positive trace preserving map.

One way of assigning payoffs to this game would be to base them on the norm difference
[Tmp &N - p&™|]. (262)

Another way would be to use tHaelity, based orrace(p @M Tp@N). This would be 1 if the
cloning machine were perfect. The fidelity could depend on the input density npatiefine
F(T) by

F(T) =inf, trace(p @V TmpaN) < 1. (263)
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Then Clare’s job is to maximizE(T). This makes the Cloning Game a maximin problem. A
cloner is called ‘universal’ if the fidelity of the output clones is independent of the input state. The
maximal fidelity of cloning for a universal cIoner% which can be achieved by unitary evolution

or by a teleportation scheme [8].

A universal quantum clonesf 1 qubit— 2 qubits is a quantum machine that takes as input an
unknown quantum state/) and generates as output two qubits in a state that may be described by
a density matrix of the forrp = n|y)(y| + (1—n)31. The parameten describes the shrinking
of the original Bloch vector corresponding to the density operater) (w|. For example, if
ly)(y| = %(1+r -0), thenp = %(1-1— nr-o). Then the optimal cloner involves maximizing the

fidelity by maximizingn < 1:

max, F = (wlply) = 5(1+1). (264)

A Bloch vector shrinkage off = % corresponds to the maximal fidelity éf

The cloning process goes like this. LB} denote the initial state of blank copies (the destina-
tion of the clones) plus any auxillary qubits (‘ancilla’) needed in the process. The |gglib be
cloned is encoded in the bagi®),|1)). Then the universal quantum cloning machine (UQCM)

transformationly ocm performs the following transformations on the basis vectors or states:

Tuqewm/0)[B) — \/§|0>|0>|AJ_> + \/g(|01> +110))|A) (265)
Tuqgem|1)[B) — \/§|1>|1>|A> + \/%(IOD +[10))|AL). (266)

HereA andA, represent two possible orthogonal final states for the ancilla qubits. Note that this

implies for the input statey), the output

Tuqem|¥)|B) — (267)

2 1 2 1 a
(\/;|0>|0>|AJ_>+\/g(|01>+|10>)|A>7 \/;|1>|1>|A>+\/g(|01>+|10>)|AJ_>) (b) - (268)

The next step is térace over the ancilla qubits, which yields a two-qubit mixed state. Then
another trace is performed with respect to each individual qubit, giving two copies of the same

mixed one-qubit state, which has a fidelityg)hoen compared to the original state.
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Conclusion

At this point the reader has enough background to start doing quantum game thory. Of course,
there is much more to be said, as the references will indicate. The reader is referred especially to
the notes on quantum computation [21] [45] [61].

This essay has demonstrated that traditional game theory is a subset of quantum game theory,
and the latter has a much richer structure and a broader set of outcomes. That is all the justification
required for doingjuantungame theory. Nothing is given up, and more is obtained by switching to
the latter. Therefore the study of traditional game theory is neither an evolutionarily stable strategy
nor a Nash equilibrium, and will be relegated to the dust-bin of extinct species and nonequilibrium
payoffs. That being said, can the current state of quantum game theory survive an invasion of
mutants? | hope those invading mutants will be mathematical economists coming to fix what's
wrong with quantum mechanics. Indeed, Lambertini [37] argues that mathematical economics
and quantum mechanics are isomorphic.

A quantum gamé& =T (H,A,U,{s};,{m};), whereH is a Hilbert spaceA is the initial state
of the gamey is a unitary matrix applied to all the player’s qubits at the beginning and end of
the game{s } are the set of moves of playgrincluding convex combinations; arfd; } j are the
set of payoffs to playej. The purpose of the game is to endogenously determine the strategies
that maximize playej’s expected payoff. Generally, a pure quantum mgvs a unitary matrix
applied to the player’s individual qubit.

In the course of this essay, we have seen the Spin Flip game, the Guess a Number games |
and Il, the RSA game, Prisoner’s dilemma, Battle of the sexes, Newcomb’s game, Evolutionar-
ily stable strategy game, Coin flip game, Pseudo-telepathy game, and game theoretic aspects of
Teleportation, Secret sharing, State estimation, and Quantum cloning. In the Spin Flip game, Bob
was able to exploit quantum superposition via the Hadamard transtdoralways win the game,
though to be sure this outcome was also dependent on the sequence of player moves. The key to
Guess a Number Game | was use of the Grover search algorithm to rotate a state vector in Hilbert
space to the approximate location of the unknown number. This search was speeded Np from
moves toy/N moves by the use of superposition and calls toftheracle. In the Guess a Number
game I, the Bernstein-Vazirani oracle was used to create the Walsh tran&ewhthe unknown
number after a single call to the oracle. In the RSA game, Shor’s factoring algorithm was used

to project a superimposed state of integers into, with high probability, a number that is near an
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integer multiple oszzn for the given composite RSA prinfd = pg, wherer is the order of the
tested element. The probability was controlled by use of the quantum Fourier transform.

In the Prisoner’s dilemma game, we saw that the addition of quantum nkbvesl o, to 1
and ok added to the traditional game outcomes, and indeed attained a Pareto optimal point as a
Nash equilibrium. In the Battle of the sexes game, the same quantum moves produced a unique
Nash and Pareto optimal equilibrium in pure strategies; and equality between Alice and Bob, also
a Nash equilibrium and Pareto optimal, in mixed strategies. Newcomb’s paradox was resolved
by the Superior Being’s ability to perfectly predict (control) Alice’s choice through the use of
superposition, which replaced omniscience on the part of the Superior Being, and the incentive
to cheat on the part of Alice. These games also show, through the use of the unitary matrix U,
the partial irrelevance of the categories ‘cooperative’ and ‘noncooperative’. If players’ qubits are
entangled in the game, there are hidden channels of communication (an invisible hand) when a
player simply focuses on maximizing his or her own expected utility. In the Evolutionarily stable
strategy game, invading mutants playing quantum moves were able to wipe out existing species
playing only classical moves. The Coin flip game demonstrated the use of a quantum oracle, in a
game without entanglement, to turn an unfair game into a fair one.

In the Pseudo-telepathy game, communication among players was not necessary in order for
them to conspire to win the game, as long as they shared a quantum entangled state. The game
could be won with certainty with an implied coalition of &l players, while any proper subset
of N had expected payoff of 0. We also saw thiatimensional probability spaceas thecore
of the pseudo-telepathy game. Does this mean quantum entanglement gives rise to quantum prob-
ability? We saw that qubit states are unobservable, and under measurement are projected onto
the measurement basis, typically O or 1, and hence destroyed. This creates opportunity as well as
difficulties. Measurement in the Bell basis is at the heart of the teleportation protocol. And while
guantum states can only be cloned with a certain fidelity, they can be used for secret sharing and
secure communication. The problems of quantum state discrimination using maximum likelihood
in a Bayesian framework, or quantum state estimation using the same in connection with the Bloch
sphere representation of the density matrix, are not concepts fundamentally foreign to economists.

Piotrowski and Sladkowski [59] have stated what they calledthantum anthropic principte
Even if at earlier stages of civilization markets were governed by classical laws, the incompara-
ble efficiency of quantum algorithms in conveying comparative advantage should result in market

evolution such that quantum behaviors will prevail over classical ones. Since nature already plays
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guantum games, it would appear that humans do so also using their personal quantum comput-
ers (human brains). Thus, while speculative, Gottfried Mayer's comme@bmplexity Digest

is not so far fetched: ‘It might be that while observing the due ceremonial of everyday market
transactions we are in fact observing capital flows resulting from quantum games eluding classical
description. If human decisions can be traced to microsopic quantum events one would expect that
nature would have taken advantage of quantum computation in evolving complex brains. In that
sense one could indeed say that quantum computers are playing their market games according to

guantum rules.’ [42]

* Email: guantum@orlingrabbe.com
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